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Abstract. A visual-language model (VLM) pre-trained on natural im-
ages and text pairs poses a significant barrier when applied to med-
ical contexts due to domain shift. Yet, adapting or fine-tuning these
VLMs for medical use presents considerable hurdles, including domain
misalignment, limited access to extensive datasets, and high-class imbal-
ances. Hence, there is a pressing need for strategies to effectively adapt
these VLMs to the medical domain, as such adaptations would prove
immensely valuable in healthcare applications. In this study, we propose
a framework designed to adeptly tailor VLMs to the medical domain,
employing selective sampling and hard-negative mining techniques for
enhanced performance in retrieval tasks. We validate the efficacy of our
proposed approach by implementing it across two distinct VLMs: the
in-domain VLM (MedCLIP) and out-of-domain VLMs (ALBEF). We
assess the performance of these models both in their original off-the-
shelf state and after undergoing our proposed training strategies, using
two extensive datasets containing mammograms and their correspond-
ing reports. Our evaluation spans zero-shot, few-shot, and supervised
scenarios. Through our approach, we observe a notable enhancement in
Recall@K performance for the image-text retrieval task 4.
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· mammogram

1 Introduction

According to the American Cancer Society (ACS) screening guidelines, women
between 40 and 44 have the option to start screening with a mammogram every
year and women 45 to 54 should get mammograms every year. This resulted in a
huge number of screening mammogram exams at each healthcare institution and
consumes significant radiologists’ time for reading. During 12 weeks of required

4 Code will be available at https://github.com/aurooj/VLM SS.git

https://github.com/aurooj/VLM_SS.git
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(a) (b)
Fig. 1: Multimodal learning for screening mammogram: (a) a session with radiology resident for the
case review; (b) framework generating joint embedding space for bilateral mammogram and free-text
radiology reports. Illustration of joint embedding space (right) is adapted from CrossCLR [21].

residency training in breast imaging, the Accreditation Council for Graduate
Medical Education (ACGME) requires residents to document a minimum of
300 interpretations of breast imaging exams (mammograms, ultrasounds, MRI)
and there are no particular criteria for training case-selection [4]. Even after
this requirement, the majority (59%) of residents do not feel prepared to read
mammograms after completing their training [2,3]. Unfortunately, the number of
fellowship-trained breast imaging radiologists is expected to decline and thus the
majority of residents will face reading mammography as part of their eventual
clinical practice. The fundamental fear of misdiagnosis (missing a cancer) and the
feeling that residency does not fully prepare them to read mammograms, likely
contributes to an increase in additional mammogram scans to confirm diagnosis
and incur avoidable cost and effort [12]. Thus, providing adequate training with
relevant case selection within radiology residency will benefit more women and
bestow safer mammographic interpretation. However, hand-picking a set of such
relevant cases is both time-consuming and challenging, as well as can introduce
sampling bias and is unlikely to match the desired distribution. Furthermore,
most PACS systems have search tools with very limited search criteria which
often result in countless useless cases. Deep learning retrieval framework has the
potential to automate and optimize case selection from 100,000’s of cases based
on multimodal data - imaging features and textual findings documented within
the reports.

We develop a multimodal framework to automatize the relevant case-selection
based on both text and image representation of the individual screening ex-
ams (Fig 1). However, there are inherent technical challenges for training such
a model - (i) natural image pre-trained VLM is often unable to capture the
radiology vocabulary with selective terms, and also natural image features do
not correspond well with gray-scale and small mammography findings; (ii) rel-
evant abnormal imaging findings (mass, calcification, architectural distortion,
solitary dilated duct) are rare in screening mammogram which makes the model
primarily learn the negative cases and omit the actual findings; (iii) syntactic
difference between the semi-structured reports are minimal, and thus the reports
with very different findings resulted similar embeddings; (iv) variations in breast
density is often the most prominent image feature in mammogram and high den-
sity can occlude abnormal imaging features. To deal with the above-mentioned
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challenges, we propose a knowledge-based grouping of the mammogram cases, se-
lective sampling, and hard-negative mining techniques for VLM model training.
We validate the efficacy of our proposed approach across two distinct VLMs:
the in-domain VLM (MedCLIP) and the out-of-domain VLM (ALBEF). Our
evaluation spans zero-shot, few-shot, and supervised scenarios using Institute X
datasets containing mammograms and their corresponding reports. The model
was also externally validated on screening mammogram data from Institute Y.

2 Related Work

i. Vision-language model in radiology - Several automated VLM efforts exist
to generate radiology reports from images either as the template report gen-
eration task by filling with classified disease tag [18] or image-text generation
task [14,16,1,13]. However, most of the current VLM models in radiology are
focused on 2D chest X-rays due to the availability of open-source datasets [9,15].
Given the complexity of processing mammogram images(large dimension, vary-
ing density, multi-view), VLM literature is limited in the mammogram domain.
ii. Multi-modal Retrieval in radiology - Recently, multimodal retrieval using
image-text contrastive pre-training is gaining interest. For example, X-REM [8],
CXR-RePaiR[5], ConVIRT [19], GLoRIA [6], and MedClip [17], leverage image-
text contrastive pre-training to retrieve relevant radiology reports based on im-
age and text embeddings. Despite these innovations, current frameworks face
notable challenges: they lack strategies to preserve representation for rare cases
crucial for embedding space integrity and struggle with mining ’hard-negatives’
in radiology, particularly evident in mammogram studies where templated re-
ports often inadequately describe distinct image features. Addressing these limi-
tations is critical for enhancing the effectiveness of multimodal retrieval systems
in medical imaging.

3 Methodology

Given a vision-language model f(θ), we want to train f(θ) effectively such that
similar image-text pairs (Ip, Tp) are close to each other in semantic space. Nega-
tive pairs are often picked within a batch from a different data sample. For any
given medical sub-domain, the vocabulary to describe the observations largely
stays consistent, particularly in mammograms as the reports are formulated fol-
lowing the standardized BIRADS vocabulary [10] generated by the American
College of Radiology (ACR). These image-report pairs can be grouped based
on the important findings in a way that each image-report pair with the same
concepts belongs to one group. Additionally, for mammograms, broad features
are visually similar to each other and need a domain expert, i.e., a radiologist to
examine for anomalies. Given the textual and visual similarity between the cases,
there is a high chance that the sampled ‘negative’ image In or text report Tn

has similar findings as the true pair does. This leads to confusion during model
training because it might be pushing away semantically similar image-text pairs.
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Fig. 2: Workflow for adapting the VLM with the proposed selective sampling to learn
joint representation aware of fine-grained knowledge. The pretrained model is tested
on out-of-domain data for zero-shot evaluation. For few-shot learning, a support set is
obtained from the training data to fine-tune the model.

We propose a knowledge-grounded mini-batch sampling ensuring batch nega-
tives to be coming from true negatives and minority cases are equally represented
during training. This is achieved in three steps as described below:

1)Knowledge extraction: To form the groups, we leveraged the standard 54
unique BIRADS image descriptors and extracted the positive mentioned from
the radiology reports which are lower cased and cleaned before extracting key
concepts. For example, for the following text report:“ the breasts are heteroge-
neously dense, which may obscure small masses. left mass: there is a mass seen
in the left breast at 3 o’clock. associated features include architectural distortion.
right there are no significant masses, calcifications, or other findings”, the ex-
tracted group is {heterogeneously dense, mass, architectural distortion} based
on the key concepts highlighted in blue. The abnormal image descriptors are pri-
marily categorized into 5 groups - breast composition, calcification, asymmetry,
mass, and surgical changes. All of these concepts except tissue density may or
may not be present in the normal image without anomaly. We excluded all the
negative and uncertain findings.

2) Knowledge grounded grouping: The presence of a key concept combina-
tion in any exam is considered a group such that every other image with the
same key concepts present belongs to the same group. All text reports with the
same key concepts (even ordered differently - < A,B,C > vs < B,C,A >) be-
long to the same group. This yields a unique set of groups from the extracted
knowledge for the given dataset. Formally, a group gi ∈ GM for i ∈ 1, 2, ...,M
is a set of key concepts within an image extracted from the paired radiology
report, where GM is the set of M total groups extracted from the text reports.
Negatives are defined as image-text pairs belonging to a different group while
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some features may be common between them, e.g., positive group < A,B > vs
negative group < A,B,C >.
3) Selective Sampling: Given an image Ip and paired text report Tp as
(Ip, Tp), a negative pair is denoted by (Ip, Tn) or (In, Tp), where In and Tn

belong to an instance from a different group. For each pair (Ipi
, Tpi

) from group
gi, a negative image Inj

or text Tnj
can be selected from group gj ∈ GM when

j ̸= i. This approach while addressing the challenge of alike image-text pairs
within a mini-batch, still faces the long-tail distribution challenge due to class
imbalance. As frequent groups have a high chance of being sampled, rare groups
often might never be seen during training. To address this problem, a mini-batch
is sampled based on the group frequency. We define a heuristic-based boundary
b to sample rare groups such that b < batch size and batch size − b instances
are selected from groups with high occurrence, i.e., frequent groups. This ensures
that b instances are coming from rare groups, where rare and frequent groups
are empirically chosen based on the data distribution.
4. VLM Training: The proposed sampling strategy is used to sample mini-
batches to train the vision-language model for contrastive learning. We use sam-
pling strategy in two settings: pretraining and few-shot learning across two ex-
isting VLMs: ALBEF [11] and MedCLIP [17]. To measure the performance, we
consider the Recall@K metric and report top-1, top-5, and top-10 performance.
We consider it a success if any report with the same findings (hence the same
group) appears in the top-K ranks.

4 Experiments and Results

Datasets: Internal Dataset: Using IRB approval, we collected 72,328 bilateral
screening mammogram exams from 46,848 patients acquired between January
2016 and December 2018 from UW Madison health affiliated centers as our in-
ternal dataset. We randomly split the dataset into train-val-test with 70,238
< image − report > pairs used for training, 1000 image-report pairs for val-
idation, and 1000 image-report pairs as a test set respectively. We use a bi-
nary mask of thresholded pixel values to identify the largest connected compo-
nent to crop the breast tissue area. The cropped R-MLO and L-MLO images
are concatenated, zero-padded for maintaining the aspect ratio, and resized to
512× 512 pixels. Reports are cleaned by lowercasing, punctuation removal, and
extra spacing removal. The text is then split into sentences, each examined for
key concepts: density, calcifications, asymmetry, architectural distortion, mass,
and additional features. This grouping allows selective sampling during model
training as described in 3. We find 1005 unique groups in the train set. Detailed
group distribution is provided in the supplementary document.
External Dataset: With the Mayo Clinic IRB approval, the screening mammo-
gram collected between 2018 - 2022 is used for external validation of our ap-
proach for supervised training as well as few-shot learning. The Mayo dataset
has 8,172 training image-report pairs and 1,015 pairs in the test set. The test
set is then used for external validation. The test set has 79 unique groups after
preprocessing as described in section 3.
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Internel test set Externel test set

Task Model R@1 R@5 R@10 R@1 R@5 R@10

Image-to-Report

NN(k=10) 10.1 - - 3.34 - -

ALBEF-Ret 12.9 37.0 47.2 19.00 50.21 65.76
ALBEF-SS-PT (ours) 9.0 32.3 40.2 20.25 48.75 51.56
ALBEF-SS-Ret (ours) 30.5 53.9 61.3 21.61 46.03 55.22

MedCLIP 6.4 11.2 15.1 16.6 30.27 35.17
MedCLIP-SS (ours) 5.10 10.60 14.90 4.28 11.69 20.98

Report-to-Image

NN(k=10) 26.4 - - 36.95 - -

ALBEF-Ret 28.6 60.5 65.2 34.13 82.98 83.82
ALBEF-SS-PT (ours) 19.4 60.7 67.6 63.88 81.73 84.76
ALBEF-SS-Ret (ours) 35.8 63.3 73.4 54.70 81.94 85.49

MedCLIP 26.70 48.40 56.30 0.31 20.77 22.02
MedCLIP-SS (ours) 31.5 62.3 66.2 0.52 21.4 24.22

Table 1: Comparative retrieval results for the proposed knowledge grounded selective
sampling (SS) on both internal (UW Madison) and external (Mayo Clinic) test sets.
‘Ret’:fine-tune models, ‘PT’:pre-trained model. Numbers are in percentages.

Implementation Details: ALBEF [11] is a VLM with image-text contrastive
loss. We pre-train ALBEF on UW Madison image-report pairs, followed by a
retrieval-only task Image Text Matching (ITM) for fine-tuning the pretrained
backbone named ALBEF-Ret. For a 512 × 512 image and the patch size of
16× 16, image encoder takes 1024 patch tokens in the ALBEF model. We train
ALBEF with (ALBEF-SS) and without (ALBEF-Ret) the proposed selective
sampling. We evaluate MedCLIP [17] pretrained on CheXpert dataset [7] and
MIMIC-CXR [9] for zero-shot, initialize model weights for few-shot learning, and
train MedCLIP on the 2D mammogram images for fully supervised backbone.
Similar to ALBEF, we also trained MedCLIP with (MedCLIP-SS) and without
(MedCLIP) the proposed selective sampling. For full training, we consider the
top 20 groups w.r.t the number of samples as frequent groups out of a total
of 1005 unique groups. We use batch size=8 and boundary b=3 for random
sampling of frequent and rare groups, i.e., for R=0.375 - 5 instances belong to
frequent groups, and 3 are sampled from the set of rare groups. All training
parameters except the hyperparameters stayed the same across models.

Results: We evaluate the learned joint embedding using image↔text retrieval
(ITR) as our downstream task. We compare ALBEF with ALBEF-SS, and
MedCLIP with MedCLIP-SS to assess the impact of selective sampling dur-
ing training. We observe improvement for both VLMs with selective sampling
for image-to-report and report-to-image retrieval on our internal test set as well
as external test data. Table 1 presents the complete results on the internal and
external data. More specifically, on the internal test set, ALBEF-SS-Ret obtains
17.6% ↑ gain in R@1 performance, ∼17%↑ improvement in R@5, and 14.1%↑ in-
crease in R@10 score over ALBEF-Ret model for image-to-report retrieval. For
report-to-image retrieval, ALBEF-SS-Ret improves by 7.2% ↑ at R@1, 2.8% ↑
at R@5, and 8.2% ↑ at R@10 scores. MedCLIP-SS achieves comparable results
to the MedCLIP baseline for R@5 and R@10. For report-to-image retrieval,
MedCLIP-SS achieves a performance gain of 4.8%↑ in R@1, 1.8%↑ as R@5, and
with a significant margin of ∼10%↑ in R@10 respectively. Overall, we observe
that image-to-report retrieval is a more challenging task for VLMs compared
to report-to-image retrieval. On the external test set, ALBEF-SS-Ret model al-
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Internal test set External test set

Task K Model R@1 R@5 R@10 R@1 R@5 R@10

Image-to-Report

ZS

MedCLIP-ViT 1.9 12.0 20.5 25.71 38.42 40.79
ALBEF-mscoco 16.8 32.0 40.5 14.61 36.01 43.11
ALBEF-flickr30k 20.0 31.1 37.5 7.83 33.82 40.29
ALBEF-SS-Ret (ours) - - - 21.61 46.03 55.22

10
MedCLIP 0.1 3.1 6.8 32.36 48.43 57.09
MedCLIP-SS 2.2 8.0 14.1 18.00 36.22 41.44

ALBEF 19.5 46.9 55.0 0.3 29.96 55.01
ALBEF-SS-Ret 25.40 48.10 57.40 20.88 46.76 56.47

Report-to-Image

ZS

MedCLIP-ViT 24.1 42.6 46.6 35.66 55.37 81.48
ALBEF-mscoco 5.6 41.2 48.7 1.36 35.07 68.37
ALBEF-flickr30k 2.2 44.3 50.5 0.32 61.17 57.74
ALBEF-SS-Ret (ours) - - - 54.70 81.94 85.49

10
MedCLIP 3.3 38.6 46.4 1.57 36.64 57.20
MedCLIP-SS 6.6 33.2 54.6 36.95 55.53 56.68

ALBEF 32.9 65.9 75.0 36.74 68.99 81.84
ALBEF-SS-Ret 31.6 67.3 73.2 35.39 78.29 80.06

Table 2: Zero-shot (ZS) and few-shot (K=10) results for image↔report retrieval.
MedCLIP-ViT is pretrained on chest x-rays [9], [7], MedCLIP and MedCLIP-SS are
trained on the screening mammogram exams. Numbers are in percentages.

though improves over ALBEF by 2.61% in terms of R@1, performance is hurt on
R@5 and R@10. Similar behavior is observed for MedCLIP-SS as well. However,
we notice a consistently significant improvement in both ALBEF-SS-Ret and
MedCLIP-SS for report-to-image retrieval. MedCLIP-SS consistently performs
better than MedCLIP in terms of R@1, R@5, and R@10 respectively.

Zero-shot retrieval: We further compare the zero-shot performance on the ex-
ternal test set from Mayo using off-the-shelf models: MedCLIP-ViT, MSCOCO-
pretrained ALBEF, and Flick30K-pretrained ALBEF and compare to ALBEF-
SS-Ret pretrained on ∼70K internal samples. For image-to-report, MedCLIP-
ViT obtains the best R@1 score: 25.7% vs. second-best 21.61% from ALBEF-
SS-Ret. ALBEF-SS-Ret outperforms MedCLIP-ViT on R@5 and R@10 by 7.61%
↑ and 14.43% ↑ respectively. For report-to-image retrieval, ALBEF-SS-Ret out-
performs MedCLIP-ViT by 19.04% ↑, 26.57% ↑, and 4.01% ↑ in terms of R@1,
R@5, and R@10 respectively. See table 2 for complete results.

Few-shot retrieval: For the few-shot learning setup, we sampled up to K=10
instances for each group from an internal training set. For groups with less
than 10 instances, we keep all available instances. This resulted in 3,331 unique
training image-report pairs.

Internal test set: For image-to-report retrieval evaluation, ALBEF-SS-Ret out-
performs ALBEF on all three metrics. MedCLIP-SS also demonstrates consistent
improvements across all metrics with at least 50% relative performance gain over
MedCLIP. For report-to-image, MedCLIP shows improvement in R@1 (3.3%↑)
and R@10 (8.2%↑). ALBEF-SS-Ret shows overall comparable performance to
ALBEF with a slight gain in the R@5 score.

External test set: We observe that ALBEF-SS-Ret performs significantly better
than its counterpart (R@1 score: 20.88% vs 0.3%, R@10: 46.76% vs 29.96%) when
doing image-to-report retrieval during external validation. For report-to-image
retrieval, it improves R@5 by approx. 10 points while performing comparable to
ALBEF on R@1 and R@10. MedCLIP-SS, in comparison with MedCLIP, also
shows significant improvement for R@1 (36.95% vs 1.57%) and R@5 (55.53%
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(a) (b)

Fig. 3: Qualitative results for Retrieval model. Samples with highlighted green words
are marked relevant by a radiologist and in pink, show not exact but related findings
in the image-report pair.

vs 36.64%) scores respectively on report-to-image retrieval task, but shows the
opposite trend on image-to-report retrieval. Overall, we observe that selective
sampling consistently benefits the ALBEF model for both internal and external
validation. MedCLIP-SS, on the other hand, while being beneficial for inter-
nal testing as well as for external validation of report-to-image retrieval per-
formance, seems to be less effective for out-of-domain image-to-report retrieval.
This is consistent with the trends observed while performing external validation
of MedCLIP-SS when trained on the full training set. We need to re-calibrate
the frequent groups to benefit from selective sampling based on the support set’s
group distribution.

Image-to-Report Report-to-Image

Method R@1 R@5 R@10 R@1 R@5 R@10

(1) R=0.25 0.4 1.5 2.4 3.2 29.2 41.6
(2) R=0.38 0.4 2.8 8.7 15.7 30.7 51.3
(3) R=0.50 0.1 1.8 5.2 17.7 41.2 58.9
(4) R=0.75 0.5 5.2 7.7 1.4 26.3 28.9

(5) w/ B shuffle 0.3 1.8 6.8 17.1 24.7 42.6
(6) w/o B shuffle 0.4 2.8 8.7 15.7 30.7 51.3

(7) Freq. groups, fixed 17.00 44.30 55.30 32.90 66.50 73.80
(8) Freq. groups, recalibrate 25.40 48.10 57.40 31.60 67.30 73.20

Table 3: Ablations for the proposed sampling strategy on Institute X using MedCLIP-
SS model. B=batch size, R=ratio of frequent groups to rare groups in a batch.

Ablations and Analyses: Table 3 reports the selected ablations from our detailed
analyses regarding important hyperparameters such as #samples from frequent
vs. rare groups, recalibrating no. of frequent groups with change in data distri-
bution that happens during few-shot learning, and choice of mini-batch shuf-
fling after our selective sampling. We used MedCLIP-SS with few-shot learning
(K=10) in all ablations unless specified otherwise. See additional results in the
supplementary document.
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5 Discussion and Conclusion

Training a large network on medical data, particularly with contrastive loss, is
always challenging when the dataset is highly influenced by the majority of ‘nor-
mal’ cases and instances with compelling representation (image or textual) are
extremely rare. Our proposed knowledge-grounded selective sampling strategy
helps the contrastive model training by ensuring the sampling of the true neg-
atives and equalizing representation of rare cases. We observed improvement in
the retrieval performance with the selective sampling strategy, especially for the
ALBEF model. For MedCLIP, we observed improvement for internal evaluation;
however, there was no improvement on the external dataset for image-to-report
which could be based on the fact that image-to-text retrieval is a more chal-
lenging task and we didn’t pre-train the MedCLIP on the mammogram dataset.
However, we still observed MedCLIP performance improvement on the external
dataset for report to image particularly in R@1 and R@5 for few-shot learning.
On the zero-shot performance, our pre-trained model also outperformed all the
baselines, including MedCLIP-VIT, on the external dataset for both image-to-
report and report-to-image retrieval tasks. It is also highlighted in the domain
of LLMs that few-shot learning can be highly sensitive to the quality of the
demonstrations, emphasizing the need for strategies to strategically select few-
shot [20].

Based on the ablation study, we also present the fact that proposed selective
sampling can help to train the VLM model with a smaller batch size for a
limited resource setting. However, thorough experimentation needs to be done
with intelligent sampling to balance the groups for larger batch sizes to properly
understand the relationship between the number of groups and the batch size.

In summary, our proposed sampling strategy lays the groundwork to rethink
data sampling strategies for effective training of multimodal networks as well
as for in-context learning, case-in-point, vision-language models grounded in the
multimodal data for medical contexts.
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