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Abstract. Recent studies have demonstrated that deep learning (DL)
models for medical image classification may exhibit biases toward certain
demographic attributes such as race, gender, and age. Existing bias mit-
igation strategies often require sensitive attributes for inference, which
may not always be available, or achieve moderate fairness enhancement
at the cost of significant accuracy decline. To overcome these obstacles,
we propose FairQuantize, a novel approach that ensures fairness by quan-
tizing model weights. We reveal that quantization can be used not as a
tool for model compression but as a means to improve model fairness.
It is based on the observation that different weights in a model im-
pact performance on various demographic groups differently. FairQuan-
tize selectively quantizes certain weights to enhance fairness while only
marginally impacting accuracy. In addition, resulting quantized models
can work without sensitive attributes as input. Experimental results on
two skin disease datasets demonstrate that FairQuantize can significantly
enhance fairness among sensitive attributes while minimizing the impact
on overall performance.

Keywords: Fairness - Quantization - Deep Learning - Dermatological
Disease Diagnosis.

1 Introduction

In conventional computer-aided diagnosis (CAD) system design, essential fea-
tures and detection criteria are first derived from clinical trials and then trans-
formed into a program deployed on medical devices. Considerable expertise
is required to optimize the extracted feature set, detection criteria, and pro-
grammable parameters. Deep learning (DL) provides an alternative solution to
reduce the demand for domain expertise in the method design. DL-based CAD
approaches are generally designed to achieve higher detection accuracy. To max-
imize accuracy performance, the DL model would leverage information that is
present in some data but absent in other data during training. However, such
trained DL model can result in discrimination towards certain demographics such
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as skin tone or gender. For example, studies [6,20] show that dermatological dis-
ease classification models trained on two publicly available dermatology datasets
(ISIC 2019 Challenge and Fitzpatrick-17k) have identified significant bias across
different skin tones. When biased models are implemented in real-world systems,
they can have negative impacts on both individuals and society. For instance,
these models may misdiagnose individuals from certain demographic groups,
resulting in greater healthcare disparities.

Many bias mitigation methods have been studied and proposed for fairness.
One of the most widely used bias mitigation methods is adversarial training
[11,18,4,1,21]. But directly excluding features linked to sensitive attributes for
both privileged and unprivileged groups might undermine classification accu-
racy by omitting crucial information, consequently lowering prediction preci-
sion [19]. Fairness through explanation is another technique for bias mitigation
[14,9,16]. This approach requires fine-grained feature-level annotation as the do-
main knowledge to train the model to only focus on bias-unrelated features in
the original input. However, such suppression of information about sensitive at-
tributes increases the potential to miss useful features, greatly degrading the
prediction performance. These state-of-the-art (SOTA) methods usually sacri-
fice considerable accuracy on both groups to improve fairness. The most recent
work FairPrune [20] and its succeeding work ME-FairPrune [2], are proposed
to achieve better fairness via model pruning. Model pruning-based methods for
fairness involve toggling individual connections on or off, which can remove vi-
tal diagnostic information and impact model performance. A more balanced
approach would be moderating, instead of eliminating, certain information to
maintain both fairness and performance, allowing for partial data flow.

To address these challenges, we develop FairQuantize, which achieves fairness
by using quantization, diverging from its traditional use for reducing size and
speeding up inference. We identify that specific weights within trained models
disproportionately benefit certain demographic groups, causing imbalances and
biased results. FairQuantize addresses this by adjusting the computation preci-
sion of these pivotal weights through quantization, thereby balancing accuracy
and fairness between different demographic groups. By employing a Taylor series
approximation [12], we pinpoint and quantize weights that significantly impact
demographic disparities. This approach allows for customizable balances between
fairness and accuracy, meeting diverse user needs. Our evaluations on two skin
lesion datasets demonstrate that FairQuantize outperforms existing SOTA fair-
ness methods by achieving greater fairness with minimal accuracy loss. To make
our research more reproducible, the code for FairQuantize is publicly available
at https://github.com/guoyb17/FairQuantize.

2 Method

2.1 Problem Definition

Consider a dataset D = {x;,y0;,¢i}, ¢ € {1,..., N}, where z; is the input image,
Yo, is the class label, ¢; is the sensitive attribute (skin tone, gender, etc.). y =
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F (O, z) is a pre-trained classification model with weights © that maps the input
x; to the prediction y; = F(O,x;). Our target is to reduce the bias of the
model F(O,x) between groups with different values of a sensitive attribute ¢
by only modifying some of the weights. In this paper, only binary sensitive
attributes (i.e., ¢; € {0, 1}) are considered, based on which all data can be divided
into two groups, named as unprivileged and privileged groups. The unprivileged
group represents the group with lower performance, while the privileged group
represents the one with higher performance.

2.2 Weight-wise Fairness Score

Weights hold different importance for a model. Typical neural networks
have millions or even billions of weights, so it is essential to decide which weights
to compress first. One direct impact for certain weights to be quantized is that
the calculation results of corresponding neurons are changed due to the change
of these weights. If we change @ for A® to represent the difference between
weights after and before quantization, then with the approximation of Taylor
series [12], we can modify the calculation of this neuron to

F(6) = F(6, + AO)

= F(6Oy) + AF(6,) A6 + %A@TH(@O)A@ +0(A6%), @

where H(6y) is the Hessian matrix of F(©) at Oy, and the third term O(AG?)
can be neglected. For a pre-trained model, it is assumed that it has converged and
that the objective function is at its local minimum, thus we can ignore the first
term part containing AF(6g) which is close to zero. Then, it can be found that
the critical part that decides how much the change of @ impacts the results falls
to the %A@TH (©9) AO part. The bigger this part is, the more significant changes
of ©® may influence F(O©). Therefore, based on the above formulas, we define the
importance of a weight 6; of all weights © as I'mportance(d;) = %hn—AGiz, where
h; is the corresponding element from the Hessian matrix H (@), which is actually
the second derivative with respect to ;.

In our work, the quantization takes an easy-to-understand one, power-of-2
[22]. By converting a weight into the format of a power of 2, say, 6; = 2", the
weight 0; can be quantized by selecting the nearest integer n, to replace the
original n, and it can be easily restored to 0;, = 2"« if needed. Therefore, the
change of the weight is Af; = [21092(abs(9)) 5i9n(6;) — 6;|, where logo(abs(6;)) is
the integer that represents the power-of-2 quantized version of the weight 6;.
Scoring is based on difference between importance. The idea of our work
stems from our empirical observation that in a pre-trained model, the signif-
icance of certain weights can vary dramatically for inputs with different at-
tributes, treating these attributes as distinct groups. Specifically, some weights
might be less important for one group while being crucial for another. To pin-
point weights suitable for quantization, we introduce a fairness-aware impor-
tance scoring method. This approach identifies weights that are less significant
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Fig. 1. The illustration of (1) quantization, (2) importance / score distributions, (3)
zoomed viewing of distributions, and (4) the color map of distributions. This case is
performed on a partly quantized model produced by our method on Fitzpatrick-17k.
In (2) and (3), the x-axis represents the index of all weights and areas of selected
weights accordingly. Blue boxes mark some typical areas of weights distributions with
low scores, which are basically because of low importance of the unprivileged (dark) and
high importance of the privileged (light). Score and importance values are normalized
to [0, 1] range for the simplicity of illustration, as shown in (4).

for the unprivileged group but crucial for the privileged group. We quantify each
weight’s relevance to fairness by combining the importances for both the unpriv-
ileged and privileged groups, adjusted by a negative scalar. That is to say, for a
weight 6;, its fairness-related importance, or score, can be defined as:

Score(6;) = Importance® P v1e9¢d(9,) — BImportance?"Ve9°d(4;)

2
= %Aaﬁ(h;‘i — BhY), .

where hY; and h%, are the second derivative calculated for the unprivileged
group and the privileged group, and [ is a positive-ranged hyper-parameter
that balances the importance values for different groups. S represents how much
FairQuantize tends to lose performance on the privileged group in exchange for
performance on the unprivileged group. If 3 is too small (close to zero), the score
will be basically irrelevant to fairness; but if 8 is too big (close to infinite), the
score will mostly care about the performance on the unprivileged group alone,
which probably will make the model unfair in the other way. Ablation study in
Sec. 3 introduces more about the usage of 3.

Algorithm 1 illustrates the steps of FairQuantize. Quantization ratio is de-
fined as the number of quantized weights divided by the total number of weights.
In incremental network quantization (INQ) based on [22], which is adopted by
our algorithm, each iteration increases quantization ratio by a step ¢, as the
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Algorithm 1 FairQuantize

Input: Pre-trained model My and weight number N, training set 7', scoring sets S“
and S?, quantization ratio step ¢, re-train epoch E, hyper-parameter .
Output: Quantized models M; and their quantization ratios @;, where i = 1,2, ..., n.
I:n«1
2: while n x ¢ < 1.0 do
3: M, <= M,_1,j <=0
for {s*,s”} in {S"(unprivileged), ST (privileged)} do
Infer with M, (s") and M, (s?) to get Hessian of weights H* and H?
Scorej < H* — 3 x H?
Set scores of quantized weights in Score; to arbitrarily small numbers
j<=i+1
9: end for
10: Order, Sorted _Score <= Sort(Average(Scorei, Scorez, ..., Score;_1))
11: Qn <= min(1.0,n X q)
12: M, <= quantization(M,) on Q, x N weights of the lowest scores
13: M, <= M,, with re-training on T for FE epochs
14: n<n+1
15: end while

main loop of Algorithm 1 goes. For each iteration, the model infers on two scor-
ing sets of two groups, and generates hessian matrices with back propagation,
with which scores are calculated as defined above. Fig. 1 also illustrates this
workflow, especially about how scoring works and determines which weights to
quantize. It is noted that scores of previously quantized weights are assigned
significantly low values to ensure they remain smaller than regular score values.
This is because after sorting, the algorithm selects weights with smallest scores
for quantization, which should include weights that have already been quantized.
This procedure ensures that quantized weights are not changed unexpectedly.
Then, weights that are not quantized yet may receive certain re-training to adapt
to the performance loss due to quantization.

3 Experiments and Results

Datasets and Pre-processing. The experiments are performed on two der-
matology datasets for disease classification, including the Fitzpatrick-17k [5,6]
and ISIC 2019 challenge [3,17] datasets. Fitzpatrick-17k dataset contains 16,577
clinical images of 114 dermatological conditions. Images are categorized into 6
types of skin tones (marked as 1 to 6), from light to dark. We group them into
light (1 to 3) and dark (4 to 6) groups, and use this binary skin tone attribute
as the sensitive attribute. ISIC 2019 contains 25,331 dermoscopic images of 9
diagnostic categories. It does not have skin color information, but it has the
binary sex label (male or female) for each sample, so we use it as the sensitive
attribute for this dataset. More details can be found in the public repository
provided above.
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Table 1. Results on Fitzpatrick-17k using VGG-11. For EOpp0, EOppl, EOdd, and
Diff., the lower the better. “Diff." stands for difference (absolute values of differences
between light and dark metrics), while “Avg." stands for average (metrics on the entire
test set). The dark skin tone group is privileged, and the light skin tone group is
unprivileged. The best result of each metric is shown in bold.

. Accuracy Fairness
Method Skin Tone o —Recall Fi-Score EOpp0 I EOppl I EOdd |
Light 0.482 0.495 0.473
. Dark 0.563 0.581 0.546
Vanilla Ave, 1 0 oo 0538 0210 0.0013 0.361 0.182
Diff. | 0.081 0.086 0.073
Light 0.489 0.469 0.457
Dark 0.514 0.545 0.503
MFD [10] Ave. 1 0.502 0.507 0.480 0.0011 0.334 0.166
Diff. | 0.025 0.076 0.046
Light 0.496 0.477 0.459
. Dark 0.567 0.519 0.507
FairPrune [20] Ave. T 0.531 0.498 0.483 0.0008 0.330 0.165
Diff. | 0.071 0.042 0.048
Light 0.542 0.535 0.522
. Dark 0.564 0.529 0.523
ME-FairPrune [2] Ave. T 0.553 0.532 0.522 0.0012 0.305 0.152
Diff. | 0.022 0.006 0.001
Light 0.519 0.493 0.493
. . Dark 0.592 0.537 0.537
FairQuantize Ave. 1 0.551 0.517 0.524 0.0012 0.269 0.135
Diff. | 0.073 0.044 0.044

Pre-training Details. We use VGG-11 [15] and ResNet18 [8] as the backbone
models. More details can be found in the public repository provided above.
Baselines. Standard training without interference of any method is denoted as
Vanilla. FairPrune [20] achieves fairness by pruning weights that are important
for the privileged group but unimportant for the unprivileged group to reduce the
performance gap. ME-FairPrune [2| applies multi-exit (ME) training framework
to FairPrune, achieveing better fainess performance. AdvConf [1] and AdvRev
[21] are two of adversarial training based de-biasing methods. HSIC' [13] achieves
fairness by masking sensitive areas in the input images. DomainIndep [19] lever-
ages multiple classifiers, one classifier for each group to explicitly split group
information. MFD [10] improves fairness via knowledge distillation.

Fairness Metrics. Equalized opportunity (EOpp) and equalized odds (EOdd)
[7] metrics are used to evaluate the fairness of the methods. The EOpp0 is the
True Negative Rate difference between the two groups. The EOppl is the True
Positive Rate difference between the two groups, while the EOdd is the summa-
tion of the True Positive Rate difference and False Positive Rate difference.
Results on Fitzpatrick-17k dataset using VGG-11. Table 1 shows the re-
sults of various methods on Fitzpatrick-17k dataset using VGG-11. The results
of some methods (proposed before 2020) are demonstrated in the supplemen-
tal material. As shown by Table 1, FairQuantize (with a quantization ratio of
20% and S = 1.0) achieves the best fairness performance in terms of EOppl
and EOdd as well as the highest F1 score over SOTA methods. Compared with
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Table 2. Results on ISIC 2019 using ResNet18. The female group is privileged, and
the male group is unprivileged. The best result of each metric is shown in bold.

Accuracy Fairness
Method Sex Precision Recall F1-Score EOppO ] EOppl | EOdd |
Female 0.793 0.721 0.746
. Male 0.731 0.725 0.723
Vanilla Ave. 1 0.762 0.723 0.735 0.006 0.044 0.022
Diff. | 0.063 0.004 0.023
Female 0.770 0.697 0.726
Male 0.772 0.726 0.744
MFD [10] Ave. 1 0.771 0.712 0.735 0.005 0.051 0.024
Diff. | 0.002 0.029 0.018
Female 0.776 0.711 0.734
. Male 0.721 0.725 0.720
FairPrune [20] Ave. T 0.748 0.718 0.727 0.007 0.026 0.014
Diff. | 0.055 0.014 0.014
Female 0.770 0.723 0.742
. Male 0.739 0.728 0.730
ME-FairPrune [2] Ave. T 0.755 0.725 0.736 0.006 0.020 0.010
Diff. | 0.032 0.005 0.011
Female 0.845 0.835 0.834
. . Male 0.863 0.849 0.856
FairQuantize Ave. T 0.857 0.843 0.850 0.003 0.019 0.012
Diff. | 0.018 0.014 0.017

the vanilla baseline, our method improves EOpp0, EOppl, and EOdd by 7.7%
(0.0013 —0.0012), 25.5% (0.361 —0.283), and 25.8% (0.182 —0.135), while main-
taining the accuracy performance. In contrast to the performances of other SOTA
methods, ours improves fairness more with much less accuracy trade-off.

Results on ISIC 2019 dataset using ResNet18. Table 2 shows the results
of various methods on ISIC 2019 dataset using ResNet18. The results of some
methods (proposed before 2020) are demonstrated in the supplemental material.
As shown by Table 2, FairQuantize (with a quantization ratio of 80% and 8 =
0.778) outperforms SOTA methods in terms of almost all accuracy and fairness
metrics. It again indicates that FairQuantize could improve the fairness of the
deep model while effectively maintaining its accuracy via quantization.

Analysis. In comparison with ISIC 2019, the vanilla baseline on the Fitz-
patrick 17k dataset shows lower accuracy and poorer fairness due to its lim-
ited number of images that span a wide range of different classes. However,
FairQuantize addresses these challenges effectively, outperforming SOTA meth-
ods in fairness scores. While the fairness improvement on ISIC 2019 is less
pronounced, FairQuantize significantly enhances accuracy, benefiting from ad-
equate re-training. Additionally, performance comparisons in Table 1 and Ta-
ble 2 demonstrate that FairQuantize surpasses methods like FairPrune and ME-
FairPrune, mainly due to its fine-grained tuning capability. Unlike the binary
nature of pruning (it either sets a weight to zero or not), FairQuantize em-
ploys power-of-2 quantization, allowing more nuanced adjustments and providing
greater flexibility in weight modification.
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Fig. 2. Ablation study on hyper-parameter 8 and quantization ratio for precision and
EOdd on Fitzpatrick-17k using VGG-11.

Ablation Study. In this section, we explore how the hyper-parameters (8 and
quantization ratio) affect the outcomes of FairQuantize. Our method incremen-
tally applies quantization to a pre-trained model, suggesting that fine-tuning
could help the model adjust to the quantization changes. Although quantized
weights remain fixed, other weights can still be re-trained. However, to avoid ad-
ditional uncertainties unrelated to quantization, we omit the re-training phase
in our ablation study experiments. Therefore, FairQuantize is applied to the pre-
trained VGG-11 model on Fitzpatrick-17k, with different 5 settings, and without
re-training. The quantized models at quantization ratios from 5% to 100%, with
a step size of 5%, are all saved for comparison.

Fig. 2(a) and Fig. 2(b) illustrate the relationship between precision (accu-
racy) and EOdd (fairness) as affected by quantization levels, revealing a trade-off:
as quantization intensifies, precision typically decreases while fairness improves.
The effect varies with different 8 values; for instance, in the case of this ex-
periment, a 8 of 0.778 shows the most conservative impact, minimally affecting
accuracy and fairness, whereas a 8 of 0.333 is more aggressive. This indicates
that adjustments in S and quantization ratio can fine-tune the balance between
accuracy and fairness. However, the presence of performance “overlaps" suggests
that optimal ( settings may need to be determined individually for each task, a
complexity further compounded by the process of re-training.

4 Conclusion

In this paper, we propose FairQuantize, a fairness-aware weight quantization
framework to optimize model fairness and to preserve classification accuracy.
The framework introduces a fairness score to observe the impact of weights on
fairness of a given model. On top of that, it applies incremental quantization on
weights selected by scores with proper re-training to improve fairness, which goes
beyond conventional thoughts that quantization is merely a model compression
method. We evaluate our framework with two datasets and two backbone models,
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compared with multiple SOTA fairness-aware methods. Experimental results
show that FairQuantize outperforms the existing methods in terms of maximizing
fairness performance while minimizing accuracy loss. The framework has the
potential to enable the development of more ethical and equitable AI systems.
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