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Abstract. Imaging modalities, such as Optical coherence tomography
(OCT), are one of the core components of medical image diagnosis. Deep
learning-based object detection and segmentation models have proven ef-
ficient and reliable in this field. OCT images have been extensively used
in deep learning-based applications, such as retinal layer segmentation
and retinal disease detection for conditions such as age-related macu-
lar degeneration (AMD) and diabetic macular edema (DME). However,
sickle-cell retinopathy (SCR) has yet to receive significant research atten-
tion in the deep-learning community, despite its detrimental effects. To
address this gap, we present a new detection network called the Cross
Scan Attention Transformer (CSAT), which is specifically designed to
identify minute irregularities such as SCR in cross-sectional images such
as OCTs. Our method employs a contrastive learning framework to pre-
train OCT images and a transformer-based detection network that takes
advantage of the volumetric nature of OCT scans. Our research demon-
strates the effectiveness of the proposed network in detecting SCR from
OCT images, with superior results compared to popular object detection
networks such as Faster-RCNN and Detection Transformer (DETR). Our
code can be found in: github.com/VimsLab/CSAT.
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1 Introduction

Optical Coherence Tomography (OCT) [9] is a medical imaging technique that
generates high-resolution cross-sectional images of a retina in real-time. Due
to the volumetric nature of the retina, an OCT scan produces multiple cross-
sectional images that expose the retinal layers, which serve as a diagnostic tool
for ophthalmologists to detect and monitor retinal diseases. Deep learning tech-
niques have been applied to OCT images to analyze various retinal diseases, such
as age-related macular degeneration (AMD), diabetic macular edema (DME),
and glaucoma. However, despite its significant impact, deep learning-based re-
search on sickle-cell retinopathy (SCR) remains limited [14].



2 A. Bhattarai et al.

SCR is an ocular condition affecting the retina of sickle cell disease (SCD)
patients and can lead to severe vision impairment or blindness. With a global in-
cidence of 300,000 neonates and 100,000 affected individuals in the United States
alone, SCR is a significant public health concern [25]. The condition interrupts
retinal blood circulation and causes damage to retinal tissues through selective
thinning of the inner retinal layers, which can be observed in OCT-generated
cross-sectional images (B-scans). The progression of SCR is an important area
of research in ophthalmology, as it can provide valuable insights for developing
new measures to control its effects. However, diagnosing SCR accurately can be
challenging, and incorrect diagnoses can cause significant emotional and financial
distress for patients and healthcare systems.

To locate, diagnose, and analyze the severity of SCR, the experts manually
study the B-scans of SCD patients. The ophthalmologists specifically look for a
pit that signifies abnormal thinning of the inner retinal layers. The impression
of retinal thinning caused by SCR can be found across multiple cross-sections.
Some example images showing SCR in consecutive OCT scans can be found in
our supplemental material. To confirm that a pit results from SCR, the experts
try to locate its impression in the adjacent B-scans. By automating this process,
we can reduce the potential for human error and increase the speed of diagnosis,
ultimately improving patient outcomes. Hence, we present the Cross Scan At-
tention Transformer (CSAT). CSAT consists of a transformer-based pre-training
network and an object detector to detect SCR from OCT scans. It provides a
more efficient approach to locating and diagnosing SCR compared to manual
inspection by ophthalmologists.

2 Related Work

Deep Learning in OCT Images: Deep learning techniques have been used to
perform two main tasks on OCT images: area segmentation and disease de-
tection. Area segmentation involves identifying and separating retinal layers
[17, 12, 2], choroidal layers [13], and other areas [23] visible in OCT scans.
Disease detection, on the other hand, focuses on specific retinal diseases such
as age-related macular degeneration (AMD) [15, 11], diabetic macular edema
(DME) [11, 18], glaucoma [22], and microcystic macular edema (MME) [16].
Retinal diseases such as DME and AMD are more widespread and therefore are
common research topics. This leaves little attention towards obscure diseases
such as SCR seen more commonly in the younger population and people of color
[25]. Although Jing et al. [14] have provided a glimpse into the possibility of deep
learning-based SCR detection, the lack of a targeted approach and full utiliza-
tion of OCT volume leaves much to be desired. Our proposed method addresses
this issue through the CSAT network.

Transformers for Object Detection: Our proposed method uses transform-
ers for pre-training and object detection. The detection transformer (DETR)
[5], one of the first transformers to perform object detection, achieved state-of-



CSAT 3

the-art results by predicting object class and location without object proposals.
Models such as Deformable-DETR [28] and CF-DETR [4] modifies DETR to
further improvise the results. Similarly, our proposed method also builds upon
DETR by applying semi-supervised pre-training, and modifying the DETR de-
coder to recognize and share common features among multiple spatially linked
images. Transformers have also been researched for medical image diagnosis and
segmentation [24, 10, 7]. Along with OCT images, transformers have been used
to analyze cross-sectional scans from several imaging modalities, such as com-
puted tomography (CT) [24, 10, 7, 26]. Although there are multiple research
studies involving cross-sectional images for medical diagnosis, the potential of
using transformers to detect SCR from OCT images is yet to be explored.

Semi-supervised and unsupervised Pre-training: Semi-supervised and un-
supervised pre-training techniques are commonly used to enhance the perfor-
mance of deep learning networks when the available labeled data samples are
limited. Several of these methods use contrastive learning such as SimCLR [6],
for classification models and MICLe [1], for in medical image segmentation. How-
ever, these methods are designed for classification problems and are not preferred
for object detection tasks. UP-DETR [8] is an unsupervised pre-training method
that enhances the detection and segmentation performance for DETR. Our pre-
training method is also based on the DETR model. However, unlike UP-DETR,
our method specializes in pre-training a set of spatially related images (such as
a set of cross-sections) instead of individual images.

3 Our Approach

The proposed method uses attention mechanisms to focus on the potential loca-
tions of SCR in the neighboring B-scans in two phases:

3.1 Phase 1: CSAT Pre-trainer

Phase 1 employs the CSAT pre-trainer, a contrastive learning framework to pre-
train the OCT B-scans. The pre-trainer contains a Siamese network [3] with
contrastive learning setting (as shown in Figure 1). This network is trained to
discern whether two augmented B-scans originate from the same OCT volume
of the same patient or from different OCTs of distinct patients. Through this
approach, the model gains the ability to compare crucial retinal layer features,
such as thickness, shape, and contour. The model takes two separate B-scans
as input and runs them through a twin network composed of a feature extrac-
tor and a transformer encoder. The feature extractor consists of a ResNet50
backbone pre-trained on the ImageNet dataset. Similar to UP-DETR [8], we
freeze the Resnet backbone during pre-training to trade off classification and
localization preferences. The features obtained from this extractor are fed into
a transformer encoder containing multi-headed self-attention layers. These at-
tention layers focus on the input ResNet features and produce a K dimensional
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Fig. 1. The CSAT Architecture consists of CSAT pre-trainer (top-left) and CSAT
detector (bottom-left). The pre-trainer implements a Siamese network with contrastive
focal loss. The detector uses the embeddings from the CSAT pre-trainer as its encoder.
The CSAT decoder (right) uses queries from Em and keys and values from E.

embedding vector of shape (B,L,K). Here, L represents the encoder sequence
length, and B represents the batch size. To obtain a shape of (B,K), the embed-
dings are averaged across L. We use Cosine Similarity (CS) as a distance metric
for the loss function. We prefer CS to p-norm for two reasons: First, our problem
statement is designed to determine the correlation between the two input vec-
tors since they do not originate from the same image, even in positive examples.
Second, CS gives normalized outputs. A contrastive focal loss function described
in Equation 1 calculates the loss. This loss is then backpropagated through the
network, ultimately causing the attention blocks to concentrate on the inner
retinal layers’ structure, which is more consistent across adjacent B-scans.

3.2 Phase 2: CSAT Object Detector

Phase 2 utilizes the CSAT object detection network, leveraging the pre-trained
model from phase 1 as an encoder. The proposed network, as illustrated in Figure
1, is designed to attend to multiple adjacent B-scans simultaneously, enabling
feature sharing to facilitate informed detection of SCR. This approach permits
the model to leverage the volumetric nature of OCT, analyzing multiple cross-
sections concurrently rather than individually. The model takes in a set of n
adjacent B-scans, where n is an odd number between 1 and P , and P is the
total number of B-scans in the OCT volume. The input tensor has a shape
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of (B,n,C,H,W ), where B,C,H, and W represent the batch size, channels,
height, and width of the input images, respectively. The encoder produces n
embedding vector of K dimensions, namely E1, E2, ..., En, each having a shape
of (B,K). A 3 × 1 × 1 max pool layer is then applied to obtain a single K
dimensional embedding, E. The unique aspect of our method is in the decoder
structure. The decoder employs a set of N queries, keys, and values for self-
attention. The queries for the encoder-decoder attention is extracted from Em

where m = 1 + n/2 whereas the keys and values are extracted from E. This
enables the model to compare the features of Em in the shared features, E.
The resulting features are normalized and sent to the prediction heads, which
generate N classes (in our case, N = 2, representing instances of fovea and SCR)
and bounding-box predictions for each query. Each prediction is attributed to the
B-scan linked to the embedding vector Em. The remaining B-scans’ predictions
are made similarly by placing the targeted image at the center of each tensor
per batch. There are three advantages to arranging embedding vectors in this
way:

1. Neighboring image features are considered when making predictions.
2. By fine-tuning the CSAT encoder during detection, the weights are updated

every time a B-scan is input as a neighbor of other B-scans, leading to faster
convergence with fewer iterations.

3. The decoder uses queries from the central vector Em to ensure that the
nearest B-scans receive more attention than those farther apart in E.

3.3 Loss Functions

We trained our self-supervised network using contrastive focal loss [19] described
in Equation 1. We applied a penalty of γ = 3 for incorrect classifications. To
balance the number of positive and negative samples, we set the weighing factor,
α = 0.15, which is the approximate ratio of positive to negative samples in the
pre-training dataset.

LCF = −log(dist) ∗ α ∗ (1− dist)γ (1)

Where, dist is the cosine similarity between the embeddings.

Similar to DETR [5], we used the minimum bipartite matching cost (Equation
2) to determine a one-on-one match between ground truth labels and predicted
outputs. We used a weighted negative log-likelihood (NLL) for classification loss,
mean square error (MSE) for bounding box regression, and a complete box-iou
loss [27] for box predictions. The overall loss was obtained by taking weighted
sum of the individual losses which are, 2, 3, and 5, respectively. These weights
were obtained through multiple experiments. Similarly, we assigned weights of
0.05, 0.6, and 0.35 to the empty class, fovea, and SCR predictions in the NLL
loss function.
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Table 1. Confusion matrix for the CSAT pre-trainer. The values are obtained
by averaging the results from 5 fold cross-validation.

Ground Truth

Prediction
True False

Positive 0.83± 0.03 0.19± 0.02
Negative 0.17± 0.03 0.81± 0.04

M = argmin
N∑
i

Cmatch(yi, y
′
i) (2)

Cmatch(yi, y
′
i) =

N∑
i

−pici + L1(bi, b
′
i) + Liou(bi, b

′
i) (3)

Where, yi and y′i represent a pair of ground truth and predicted outputs, pi is
the class probability, ci is the true class labels and bi and b′i are a pair of ground-
truth and predicted bounding boxes, respectively.

4 Evaluation

4.1 Dataset

Our proposed method utilizes an internal dataset containing 594 OCT volumes
from 147 participating patients with varying severity of SCD. The age of the
patients on their first OCT test ranged from 4.44 to 20.39, with a mean age of
11.68±4.34 and a median age of 11.23. Among the patients, 70 were male, and 77
were female. The OCT scans were obtained using a Spectralis scanner from Hei-
delberg Engineering. The posterior pole volume scan involved a 30°×25°cuboid,
with 31 raster lines producing 31 cross-sections per OCT. Both SCR and Fovea
instances were manually annotated in the B-scans by experts. Detailed statistics
on the dataset are presented as supplemental material.

4.2 Training and Experiments

In the pre-training network, we augmented the OCT images using random hor-
izontal flips, color variance, blur, and brightness. The positive samples were
generated by pairing B-scans with at most three steps between them, whereas
the negative samples were generated by pairing B-scans from different patients.
For example, an OCT volume containing B-scans in order: 1, 2, 3, ...n may have
the following positive pairs: (1, 2), (1, 3), ...(n−3, n). We calculated the confusion
matrix of our evaluation by averaging the 5-fold cross-validation results. Table
1 illustrates the confusion matrix obtained from this experiment. We obtained
an average precision of 81% and an average recall of 83%.
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Table 2. Comparing the mean average precision (mAP) of three CSAT mod-
els: CSATa (no pre-training), CSATb (pre-training but no fine-tuning), and CSATc

(pre-training and fine-tuning) with YOLO [20], Faster RCNN [21], and DETR [5] for
SCR and fovea detection. Bold and underlined numbers represent the highest and
second-highest SCR detection results, respectively.

mAP YOLO
v8

Faster
RCNN DETR CSAT

a
CSAT

b
CSAT

c

@.5 SCR 0.78 0.78 0.81 0.80 0.83 0.86
Fovea 0.85 0.84 0.86 0.85 0.89 0.91

@.5:.95 SCR 0.72 0.69 0.76 0.78 0.81 0.83
Fovea 0.75 0.74 0.81 0.82 0.84 0.85

Fig. 2. SCR detection using CSAT. Top: Original B-scans. Middle: SCR and fovea
instances detected by CSAT. Bottom: Attention plot of the CSAT detections.

We trained the CSAT detector to identify fovea and SCR instances in B-
scans. We used the pre-trained embedding weights to train and test our CSAT
detector. We used mean average precision (mAP) as our evaluation metric and
compared the performances of CSAT to some state-of-the-art object detection
methods such as YOLOv8 [20], Faster RCNN [21], and DETR [5], using our
OCT dataset. These models were not pre-trained on the dataset. We trained
and tested three different models of CSAT, namely CSAT a, b, and c, based on
whether they were trained without pre-training, with pre-training but without
fine-tuning, and with both pre-training and fine-tuning, respectively. The results
depicted in Table 2 showed that our method outperformed other object detection
networks in SCR detection. Among our three models, CSATc, which fine-tuned
the pre-trained network, performed the best, followed by CSATb and CSATa. A
detailed description of CSAT implementation (pre-trainer and detector) can be
found in our supplemental material.
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4.3 Ablation Study

In Sub-section 3.2, we discussed the three advantages of the proposed architec-
ture. This section will present the experiments we conducted to support our
conclusions.

Our first experiment involved training the CSAT model with different values
of n. The precision-recall curve in the Figure 3 (a) demonstrates the comparison
between models trained with n = 1, n = 3, and n = 5. Our findings indicate that
models with n = 5 and n = 3 outperformed the model with n = 1, which only
used one B-scan at a time. This suggests that including neighboring B-scans in
the training process improves detection results. However, increasing the value of

Fig. 3. Ablation results: (a): P-R curve for different values of n. (b): P-R curve for
CSAT models - CSATa, CSATb, and CSATc

n also increases the model complexity. As we can observe in the Figure 3 (a),
the rate of improvement in detection performance decreases as the value of n
increases. This indicates that although a higher n may enhance the detection
performance, the B-scans closest to the image with Em have more influence on
the detection made for Em.

Our second experiment involved training and evaluating three CSAT models,
CSAT a, b, and c. The Table 2 shows the mAP values for these models, while the
Figure 3 (b) displays the precision-recall curves for each model. These results
highlight the effectiveness of model c compared to b and a, indicating that pre-
training and fine-tuning significantly enhance the detection performance.

5 Discussion

In the proposed work, the CSAT pre-trainer extracts the fundamental features
from the B-scans to help the detector converge more quickly with less computa-
tion. It is trained to classify a pair of B-scans into two classes. Positive: the pairs
are adjacent B-scans from the same patient and, negative: the B-scans belong
to different patients (hence, they are not adjacent). Through this classification,
we ensure that while learning to identify adjacent B-scans, the model focuses
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on the inherent features unique to these B-scans. By learning these features,
the encoder provides the information that the detector needs i.e., the similar
artifacts between neighboring B-scans. This allows the detector to utilize these
common features to detect SCR with higher accuracy, as depicted by our results.
To further verify this theory, we extensively visualized attention maps between
the positive and negative pairs, like in Figure 2. We observed that the common
features in the adjacent B-scans were highlighted in the case of positive pairs,
whereas there were few to no highlights in the negative pairs.

6 Conclusion

Our proposed network, the Cross Scan Attention Transformer (CSAT), is a
unique extension to the Detection Transformer (DETR) that primarily serves
three purposes. Firstly, it detects subtle patterns within the retinal layers of
OCT images using a transformer-based pre-training network. Secondly, it ex-
tracts and analyzes similar features from adjacent B-scans using pre-trained em-
beddings and attention mechanisms. Finally, it presents the first deep learning-
based framework dedicated to sickle-cell retinopathy (SCR) detection from OCT
images, outperforming several state-of-the-art object detection networks. Our re-
search aims to improve the diagnosis and treatment of SCR, a condition affecting
many individuals worldwide. With the introduction of the CSAT network, we
hope to contribute to developing more accurate and reliable medical image di-
agnosis tools. In subsequent studies, we plan to expand the CSAT network to
other areas of medical image analysis and imaging modalities.
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