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Abstract. Due to various physical degradation factors and limited pho-
ton counts detected, obtaining high-quality images from low-dose Positron
emission tomography (PET) scans is challenging. The Denoising Diffu-
sion Probabilistic Model (DDPM), an advanced distribution learning-
based generative model, has shown promising performance across various
computer-vision tasks. However, currently DDPM is mainly investigated
in 2D mode, which has limitations for PET image denoising, as PET
is usually acquired, reconstructed, and analyzed in 3D mode. In this
work, we proposed a 3D DDPM method for PET image denoising, which
employed a 3D convolutional network to train the score function, en-
abling the network to learn 3D distribution. The total-body 18F-FDG
PET datasets acquired from the Siemens Biograph Vision Quadra scan-
ner (axial field of view >1m) were employed to evaluate the 3D DDPM
method, as these total-body datasets needed 3D operations the most
to leverage the rich information from different axial slices. All models
were trained on 1/20 low-dose images and then evaluated on 1/4, 1/20,
and 1/50 low-dose images, respectively. Experimental results indicated
that 3D DDPM significantly outperformed 2D DDPM and 3D UNet
in qualitative and quantitative assessments, capable of recovering finer
structures and more accurate edge contours from low-quality PET images.
Moreover, 3D DDPM revealed greater robustness when there were noise
level mismatches between training and testing data. Finally, comparing
3D DDPM with 2D DDPM in terms of uncertainty revealed 3D DDPM’s
higher confidence in reproducibility.
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1 Introduction

Positron Emission Tomography (PET) is highly valued for disease management
of cancer [20], neurodegenerative diseases [1], and cardiac diseases [5] due to
its high sensitivity and precise quantification capabilities. Concerns regarding
radiation exposure and potential cancer risk [19, 10] necessitate the reduction
of PET injection dose. This reduction, however, leads to a deterioration of
PET image quality, which can comprise its quantitative accuracy and lesion
detectability [24]. Therefore, restoring high-quality PET images from low-dose
PET datasets emerges as a crucial challenge.

With the availability of extensive training data and substantial computational
resources, large-scale neural network training becomes feasible, leading to rapid
developments in deep learning-based PET image denoising. Convolutional Neural
Networks (CNNs) show their superiority in various PET image denoising evalua-
tions [12, 3, 14, 21]. The integration of skip connections [9], residual learning [30,
18], and perceptual loss [7] has further improved CNN’s performance for PET
image denoising. However, CNNs can sometimes produce overly smoothed results
that can overlook lesions or pathology changes. Generative Adversarial Networks
(GANs), with their novel adversarial loss item, can generate results with less
spatial blurring and better visual quality [27, 27, 6], even at scenarios without
utilizing paired training data [17, 31]. However, they may suffer from instability
during the adversarial training process, which needs careful hyperparameter
tuning.

In recent years, diffusion models have surpassed GANs as the leading image
generation model [4]. The Denoising Diffusion Probabilistic Model (DDPM) [11],
an advanced distribution learning-based model, has shown promising performance
across various medical image processing tasks [15, 23, 32]. In the forward diffusion
phase of DDPM, random Gaussian noise is gradually injected into the image to
perturb the input data, and then the model learns to reverse this diffusion process
to construct the desired data samples from the noise. Current diffusion model-
based denoising methods are mainly focusing on 2D mode[13, 8, 16], limiting
their application in PET imaging as PET is inherently a 3D imaging modality.
Although some works proposed to include adjacent slices into the network training
to address the issue of 3D inconsistency[29], the network used to generate the
score function still relies on 2D convolutional networks, hindering the ability to
perceive 3D structural information from PET volumes.

In this work, we proposed a 3D DDPM method for total-body PET image
denoising. A 3D convolutional network with residual blocks was implemented
to generate the score function, allowing the model to learn the 3D distribution
information of PET. Experimental results based on total-body 18F-FDG PET
datasets of different dose levels indicated that the proposed 3D DDPM method
significantly outperformed 2D DDPM and 3D UNet in both qualitative and quan-
titative aspects, demonstrating its superior robustness. Moreover, we explored
the advantage of 3D DDPM over 2D DDPM in terms of uncertainty, where 3D
DDPM model exhibited higher confidence in reproducibility.
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2 Methodology

2.1 Diffusion Models

Given a noise-free data point x0 sampled from the real data distribution q(x),
the forward process of the diffusion model [25, 11] is defined as a Markov process,
where Gaussian noise is gradually added to x0 in accordance with a variance
schedule {βt ∈ (0, 1)}Tt=1, over a large enough number of time steps T , which can
be expressed as:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

Based on the property that xt can be sampled at any arbitrary time step in
a closed form, the forward process can be further expressed with the notation
αt = 1− βt and ᾱt =

∏t
s=1 αs:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

If the above process can be reversed, we can sample from q(xt−1|xt) and recon-
struct the clean data from a Gaussian noise xT ∼ N (0, I). When βt is small
enough, q(xt−1|xt) also follows Gaussian distribution and is tractable when
conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0),
1− ᾱt−1

1− ᾱt
βtI), (3)

where µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt. (4)

However, as x0 remains unknown during the sampling process, it is requisite to
learn a model pθ to approximate these conditional probabilities for executing the
reverse diffusion process:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt), (5)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (6)

where µθ and Σθ denote the predicted mean and variance, respectively, with
the input xt and t through a network with parameter θ. Following the prior
works [11, 22], we can then parameterize µθ to predict the noise ϵθ instead of the
mean value:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(7)

Hence, xt−1 can be computed as follows:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, where z ∼ N (0, I) (8)
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Fig. 1. Diagram of the proposed 3D DDPM framework.

2.2 Conditional PET Image Denoising Based on 3D DDPM

The above DDPM framework is employed for unconditional image generation.
To facilitate PET image denoising, a noisy PET image is required to be input
into the network to guide the image generation, rather than the random gen-
eration of new samples. Fig. 1 shows the diagram of the proposed 3D DDPM.
The network’s input is transformed to paired of predicted high-quality PET
image x and original low-quality PET image y, with the score function ϵθ(xt, t)
modified to ϵθ(xt,y, t). Additionally, learnable parameter Σθ(xt, t) can be set to
untrained time dependent constants σ2

t I [11]. Consequently, Eq. 6, 7, and 8 can
be reformulated as:

pθ(xt−1|xt,y) = N (xt−1;µθ(xt,y, t), σ
2
t I) (9)

µθ(xt,y, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt,y, t)

)
(10)

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt,y, t)

)
+ σtz, (11)

For the score-function optimization, the objective utilized in the training pro-
cessing is therefore expressed as:

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt,y, t)∥2

]
. (12)

As this is the feasibility study testing 3D DDPM for PET image denoising, we
adopted the most widely used 3D UNet architecture as the 3D DDPM’s backbone
network to recover clean data from noisy inputs. We expect better performance
can be achieved if more advanced 3D network is employed as the backbone
network.
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3 Experiments and Results

3.1 Dataset and Implementation details

The Siemens Biograph Vision Quadra data from the Ultra-low Dose PET Imaging
Challenge was utilized in our experiments, which comprised 377 total-body
18F-FDG PET datasets. Fig.2 illustrates details of the data employed in our
experiments along with visual examples of different dose levels. To enhance
data processing efficiency, parts of background areas and the patients’ legs were
cropped, resulting in an image matrix size of 192 × 288 × 520, corresponding
to dimensions in the coronal, sagittal, and axial directions, respectively. The
voxel size was 1.65 × 1.65 × 1.65 mm3. The image intensity was expressed in
Standardized Uptake Value (SUV). The 1/20 low-dose and normal-dose PET
data were selected as the low- and high-quality paired data for the model training
and evaluation, which were randomly divided into training data (302 datasets),
validation data (15 datasets), and test data (60 datasets). Additionally, the 1/4
and 1/50 low-dose PET data from the test data pool were further evaluated by
the model to assess the robustness of different methods to discrepancies in noise
levels between the training and test datasets.

Fig. 2. (A) Details about the datasets used in the training, validation, and test scenarios.
(B) Sagittal views of one example normal-dose, 1/4, 1/20, and 1/50 low-dose PET data
from the Siemens Biograph Vision Quadra total-body 18F-FDG PET datasets.

Considering the available GPU memory, the total-body PET data were
randomly cropped into patches of size 96 × 96 × 96 for network input during
training. During the sampling stage, the total-body PET was first chunked into
six segments along the axial direction with an overlap of 10 voxels, then fed
sequentially into the 3D model, and finally combined together to generate the
final total-body PET image with a weighted arithmetic mean applied to the
overlapping parts. The time step T was set to 1000 throughout the forward and
reverse diffusion processes, and a linear noise schedule was implemented. The
training batch size was set to 8, utilizing 8 NVIDIA A100 GPUs for distributed
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Fig. 3. Three views of one test dataset denoised using different methods, along with
the normal-dose PET image and 1/20 low-dose PET image.

training. The training time was approximately nine days, and the testing time
was on average 28 minutes per test dataset.

The 2D DDPM [4] and 3D UNet [2]-based image denoising were employed
as reference methods. The 2D DDPM network took an additional two neigh-
boring axial slices as the input to avoid axial artifacts, inspired by the work of
Gong et al. [8] The input patch size for the 3D UNet was aligned with 3D DDPM
to ensure a fair comparison. All methods were implemented using PyTorch; the
learning rate was set to 1× 10−4, and mixed precision training techniques were
applied to enhance computational efficiency.

3.2 Evaluation Metrics

To quantitatively evaluate the denoising results of various methods, the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [28]
were adopted, utilizing normal-dose PET images y as the ground truth. PSNR
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Fig. 4. (A) The PSNR and SSIM values calculated based on 60 1/20 low-dose test
datasets. (B) Sagittal view of the uncertainty maps of one test data calculated from 20
realizations for 2D DDPM and 3D DDPM.(C) The PSNR and SSIM values calculated
based on 60 1/4 and 1/50 low-dose test datasets, respectively. (D) The SSIM percentage
reduction when the dose level of 60 test datasets decreased from 1/20 to 1/50. ***, ns
located at the top of the bar plot represents p-value <0.001, p-value >0.05, respectively.

approximated the quality of reconstruction for denoised low-dose PET images x
in comparison to y based on their Mean Squared Error (MSE) calculated as :

PSNR(x,y) = 10 · log10[MAXI/MSE(x,y)], (13)

where MAXI represented the maximum possible pixel value of the images. SSIM
compared x and y based on three properties: luminance, contrast, and structure,
and was defined as:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (14)

where µx(µy) denoted the mean, σ2
x(σ

2
y) was the variance of x(y), and σxy

denoted the cross-correlation between x and y. C1, C2, and C3 were small
constants that ensure numeric stability, which were set based on the default
settings in scikit-image [26] metrics. The Wilcoxon signed-rank tests for PSNR
and SSIM were performed to ascertain whether there were statistically significant
differences between the different methods.

3.3 Results

The qualitative evaluation results of the proposed 3D DDPM and other reference
methods are shown in Fig. 3, which indicated that the results produced by 3D
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Fig. 5. Sagittal view of 1/4 and 1/50 low-dose PET images and the corresponding
denoising results using the proposed 3D DDPM, along with the normal-dose PET.

UNet were overly smooth. In contrast, 2D DDPM and 3D DDPM generated more
realistic denoising results. 3D DDPM significantly surpassed both 2D DDPM and
3D UNet across various body organs, revealing better structural details and more
precise edge contours. The quantitative results shown in Fig. 4(A) matched with
our qualitative observations. 3D DDPM achieved significantly better performance
in both PSNR and SSIM than the other two methods. One advantage of DDPM
is the ability to generate the uncertainty map. Fig. 4(B) presents the uncertainty
map of the 3D DDPM results, generated using 20 different random seeds, alongside
the 2D DDPM for comparison. The results indicate that the 3D DDPM exhibits
lower uncertainty, especially in the lesion regions, compared to 2D DDPM. This
demonstrates the higher reliability of 3D DDPM in quantitative characteristics,
reflecting its high confidence in reproducibility.

Furthermore, all methods were directly applied to data with varying noise
levels without any fine-tuning. The 3D DDPM achieved the best outcomes across
all evaluation metrics (as shown in Fig. 4(C)), showcasing the superiority on
data with higher or lower doses than the training dataset, thus demonstrating
its excellent generalization performance. Notably, when the test data dose was
reduced from 1/20 to 1/50, the 3D DDPM exhibited the minimal decline in SSIM
(as shown in Fig. 4(D)), indicating the robustness of the 3D DDPM approach. The
qualitative results (as shown in Fig. 5) revealed that the 3D DDPM consistently
produced promising denoising results regardless of the PET image dose level. As
the dose increased, the denoising results were further improved; when the dose
decreased, features nearly invisible in low-dose images were effectively recovered.
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4 Conclusion

In this work, we proposed a 3D DDPM framework to enhance the quality of low-
dose total-body PET images. Our qualitative and quantitative results indicated
the superiority of the proposed 3D DDPM over 2D DDPM and 3D UNet methods,
demonstrating the advantage of extending diffusion models to 3D mode for total-
body PET image denoising. Furthermore, our method exhibits strong robustness,
which consistently conducted promising denoising results across PET images with
varying noise levels, indicating its substantial practical significance and potential
for clinical applications.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
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