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Abstract. Acute allograft rejection poses a significant challenge in kid-
ney transplantation, the primary remedy for end-stage renal disease.
Timely detection is crucial for intervention and graft preservation. A
notable obstacle involves ensuring consistency across Diffusion Weighted
Magnetic Resonance Imaging (DW-MRI) scanning protocols at various
Tesla levels. To tackle this, we propose a novel, non-invasive frame-
work for automated diagnosis of acute renal rejection using DW-MRI.
Our method comprises several key steps: Initially, we register the seg-
mented kidney across different scanners, aligning them from the cortex
to the medulla. Afterwards, the Apparent Diffusion Coefficient (ADC)
is estimated for the segmented kidney. Then, the ADC maps are par-
titioned into a 3D iso-surface from the cortex to the medulla using
the fast-marching level sets method. Next, the Cumulative Distribu-
tion Function (CDF) of the ADC for each iso-surface is computed, and
Spearman correlation is applied to these CDFs. Finally, we introduce
a Transformer-based Correlations to Classes Converter (T3C) model to
leverage these correlations for distinguishing between normal and acutely
rejected transplants. Evaluation on a cohort of 94 subjects (40 with acute
renal rejection and 54 control subjects) yields promising results, with a
mean accuracy of 98.723%, a mean sensitivity of 97%, and a mean speci-
ficity of 100%, employing a leave-one-subject testing approach. These
findings underscore the effectiveness and robustness of our proposed
framework.
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1 Introduction

Renal transplantation, a primary procedure in organ transplantation, is the pre-
ferred treatment for end-stage renal failure [2]. Despite progress, post-transplant
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complications and increased rates of renal insufficiency pose challenges to its
effectiveness [7]. Therefore, timely and accurate diagnosis and treatment are es-
sential for the survival of transplanted kidneys. Emerging imaging techniques
like Magnetic Resonance Imaging (MRI) offer noninvasive assessment of trans-
planted kidneys [7]. The apparent diffusion coefficient (ADC) from Diffusion-
Weighted Imaging (DWI) is a reliable biomarker for renal allograft function [1].
Notably, patients with higher creatinine clearance typically have higher ADC
values [6]. It has been suggested that the use of Machine Learning (ML) with
high-dimensional radiomics features of MRI can provide promising performance
advantages, including improved diagnostic, prognostic, and predictive accuracy,
which may lead to a rapid rise in the potential use of ML in renal imaging [4, 5].
Moreover, Deep Learning (DL) techniques have garnered attention in this field.
For instance, Zhi et al. [9] employed a Convolutional Neural Network (CNN)
to analyze clinical and MRI data from 252 kidney-allografted patients, achiev-
ing a macro Area Under the Curve of 76.2% in distinguishing allograft condi-
tions and predicting impaired graft function. Furthermore, Shehata et al. [8]
developed a DL-based classifier using DWI, demonstrating a prediction accu-
racy of 97% for acute renal transplant rejection. In summary, both ML and DL
models demonstrate proficiency in predicting acute renal transplant rejection.
However, existing research overlooks the importance of correlations between the
iso-surfaces of the kidney itself. Furthermore, significant challenges exist, includ-
ing ensuring consistency across Diffusion Weighted Magnetic Resonance Imaging
(DW-MRI) scanning protocols at various Tesla levels (e.g., 1.5 Tesla (T) and 3T)
and addressing the shape deformation that may occur in the transplanted kidney
(graft), leading to alterations in MRI diffusion signals. Additionally, models such
as transformers, which hold promise for delivering more nuanced outcomes, have
not been extensively utilized in this context. Moreover, there is a need for an ex-
panded examination of different classifiers and their respective trade-offs. Also,
renal transplant care is complex. Achieving a complete and accurate diagnosis
during patient follow-up is an equally daunting task, fraught with challenges.
The dynamic nature of graft health necessitates not just a one-time assessment
but a series of exhaustive examinations using diverse MRI scanning protocols. To
address these challenges, this study introduces a transformer-based framework
for classifying acute renal transplant rejection using DW-MRI data obtained
through various scanning protocols (specifically, 1.5T and 3T). It streamlines
the difficult process of examining diverse MRI scanning protocols, thereby en-
hancing the accuracy of follow-up diagnoses. The framework involves several key
steps. Firstly, the segmented kidney is registered with a reference image by ap-
plying a 12-degree-of-freedom affine-based registration, followed by a non-rigid
3D B-spline transformation [3] to ensure alignment of the main regions within
the kidney (cortex, medulla, renal pyramids, renal pelvis, etc.). In the next step,
the ADC maps of the segmented kidney are calculated. After that, iso-surfaces
are generated from these maps. Then, we compute the Cumulative Distribution
Function (CDF) for each iso-surface. The Spearman correlation algorithm is then
applied to these CDFs corresponding to iso-surfaces. Finally, a transformer-based
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model is employed to leverage these correlations to distinguish between normal
and acutely rejected transplants. To sum up, our contributions are twofold:

– We introduce a novel transformer-based framework for classifying acute renal
transplant rejection using DW-MRI data obtained through various scanning
protocols, which is a new approach that accounts for variations in scanner
types and mitigates potential effects on MRI signals based on the correla-
tions.

– We propose a Transformer-based Correlations to Classes Converter (T3C)
model to leverage the correlations of the CDFs to distinguish between normal
and acutely rejected transplants, highlighting the effectiveness and versatility
of the transformer model in this context.

2 Methodology

A transformer-based framework is introduced to predict acute renal transplant
rejection using diverse DW-MRI scanning protocols (see Figure 1). The frame-
work begins with preprocessing, which yields segmented ADC maps. Then, iso-
surfaces are generated to represent distinct kidney regions. Afterwards, the T3C
model leverages the correlations of CDFs which correspond to these regions for
a comprehensive prediction of kidney states.

Fig. 1. An overview of the proposed framework employs data from various DW-MRI
scanning protocols to predict both normal and acute rejection.

2.1 Preprocessing

As depicted in Figure 1, this step involves subjecting the DW-MRI scans to
segmentation to extract kidney using in-house software. A common challenge
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in DW-MRIs is the shape deformation that can lead to the alteration of MRI
diffusion signals. The geometric shapes of anatomical structures can also affect
the prediction accuracy. Therefore, the segmented kidneys undergo processing
to align them and eliminate their deformation in intra-patient scenarios, such as
due to breathing and/or heart beating, and to account for the kidney’s variability
due to inter-patient anatomical differences. Specifically, one of the 3D images is
chosen as a reference image and all other 3D images are aligned to it by applying
a 12-degree-of-freedom affine-based registration. To further correct the shape
deformation, a non-rigid 3D B-spline transformation [3] is applied (see Figure 2).
Afterwards, the registered kidneys are transformed to yield their corresponding
ADC maps. These ADC maps are then used as inputs for the next step.

Fig. 2. This figure illustrates a cross-section of 3D images through the registration
process. (a) displays the reference image, while (b) presents the moving image. (c) and
(d) show the outcomes following a 12-degree-of-freedom affine-based registration and
the result obtained from a non-rigid 3D B-spline transformation, respectively.

2.2 ISO-surface Analysis

This study aims to develop a non-invasive method for identifying potential abnor-
malities indicative of renal rejection. To achieve this, we leverage correlations of
CDFs which correspond to iso-surfaces of the kidney. Since the correlation mea-
sures the strength and direction of a linear relationship between two variables
(in this case, the CDFs of iso-surfaces), we focus on the relationship patterns
between distributions of different kidney regions using correlation rather than
analyzing the raw imaging data directly. This approach mitigates the impact
of scanner-induced variations on the raw imaging data values, which can be in-
fluenced by the specific characteristics of the scanner. To identify iso-surfaces,
we employ a fast marching algorithm. Furthermore, the Spearman correlation
is used for calculating correlations. The rationale behind using the Spearman
correlation algorithm is its ability to assess monotonic relationships, determin-
ing whether there is a linear pattern or not between iso-surfaces. Upon visual
inspection of Figure 3, which displays the correlations 3D iso-surfaces for two
patients (a) and (b), it is evident that the acutely rejected kidney, as shown in
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(b), exhibits variations in correlation when compared to the normal kidney, as
illustrated in (a). These variations suggest potential abnormalities within these
regions, indicative of renal rejection.

Fig. 3. The process flow from acquiring the iso-surfaces to calculating the correspond-
ing correlations is presented. (a) represents a normal case, while (b) shows an acute
rejection case where the correlations experience variations, indicative of renal rejection.

2.3 Transformer-based Correlations to Classes Converter (T3C)

In the final stage, the correlations derived from the previous step undergo trans-
formation via Principal Component Analysis (PCA). This is done to reduce
the dimensionality of the obtained correlations, discarding those of lesser sig-
nificance while preserving the essential ones (see Figures 1 and 4). This pro-
cedure aids in the development of a robust model that can accurately predict
the status of transplanted kidneys, differentiating between normal function and
instances of acute rejection. To achieve this, we have designed a T3C model
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that learns to map correlations to class scores. Specifically, a correlation tensor
x ∈ RN×R×C is defined, where N represents the number of b-values for each
patient, R is the number of rows, and C is the number of columns. This ten-
sor is reshaped and linearly transformed to produce a sequence of correlation
embeddings x = [e1, ..., eN ] ∈ RN×L, where e ∈ RL. To maintain positional in-
formation, learnable position embeddings p = [p1, ..., pN ] ∈ RN×L are added to
the correlation embeddings, resulting in the input sequence of tokens z = x+ p.
The T3C model’s transformer encoder, composed of H layers, processes the in-
put sequences z, generating contextualized encodings zH ∈ RN×L. Each trans-
former layer consists of a multi-headed self-attention (MSA) block followed by a
point-wise MLP block, with layer normalization (LN) applied before and residual
connections added after each block:

ai−1 = MSA(LN(zi−1)) + zi−1,

zi = MLP(LN(ai−1)) + ai−1,

where i ∈ {1, ...,H}. The self-attention mechanism computes queries Q ∈ RN×d,
keys K ∈ RN×d, and values V ∈ RN×d via three point-wise linear layers and
then computes self-attention as:

MSA(Q,K,V) = softmax

(
QKT

√
d

)
V

The transformer encoder maps the input sequences to a contextualized encoding
sequence zH = [zH,1, ..., zH,N ] that contains rich salient information. Subse-
quently, zH is utilized by a Fully Connected (FC) classifier to obtain class scores
corresponding to normal and acute rejection. Please refer to Figure 1 for a better
understanding of the developed T3C model.

Fig. 4. The procedure involves applying PCA to the correlations. (a) depicts the orig-
inal Spearman correlation matrix, while (b) illustrates the matrix after retaining sig-
nificant correlations and discarding insignificant ones.
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3 Experiments and Results

Dataset. This study’s dataset includes DW-MRI scans from 94 patients. Of
these, 34 were obtained using a 1.5T SIGNA Horizon scanner, adhering to spe-
cific parameters for coronal DW-MR images. The scans included 11 b-values
sequences and baseline b0 scans, capturing blood perfusion and water diffusion
effects. Each sequence used a single DW-MRI direction with equal gradient am-
plitudes. Furthermore, 60 DW-MRI scans were performed using a 3T scanner,
following similar protocols with minor adjustments due to different scanner mod-
els. Each scan also included 11 b-values and the baseline b0.
Setting. We utilize an Adam optimizer with a learning rate of 0.001 over 100
epochs. Leave-one-out cross-validation is employed for evaluating the models,
and the reported results represent the mean of ten runs. Additionally, L2 loss is
utilized for training the model. The implementation was carried out using Py-
Torch on a single NVIDIA Quadro P4000 GPU with 8GB of memory.
Results and Analysis. We conducted two main experiments: the first used clas-
sical ML classifiers to categorize correlations, while the second utilized the pro-
posed transformer-based model. As shown in Table 1, among the ML classifiers,
Random Forest (RF) achieved the highest mean Accuracy (ACC) of 51.915%,
mean Specificity (SPE) of 70.370%, and mean Area Under the Curve (AUC)
of 48.685%. Decision Tree (DT) attained the highest mean Sensitivity (SEN)
of 42.250% compared to Multi-Layer Perceptron (MLP) and Gradient Boosting
(GB). However, the T3C model outperformed all others, boasting a mean ACC
of 98.723%, mean SEN of 97%, mean SPE of 100%, and mean AUC of 98.5%,
surpassing RF, DT, MLP, and GB. To further validate our model’s superiority,
we conducted a Mann–Whitney statistical test, revealing significant statistical
superiority with a p-value less than 0.001 compared to other classifiers. Our
findings have profound implications for clinical practice, as accurate prediction
of normalcy or acute rejection in transplanted kidneys is crucial for effective
treatment planning and monitoring. However, it is important to acknowledge
the limitations of our approach, notably the relatively small cohort of only 94
patients

Table 1. A comparison of the classification results between the T3C model and classical
ML classifiers is presented. The mean±standard deviation, expressed in percentage,
along with the statistical significance, are reported. Notably, the p-value for our model,
when compared to other classifiers, was found to be less than 0.001, indicating a high
level of statistical significance.

Classifier ACC SEN SPE AUC Mann–Whitney
RF 51.915± 3.184 27.000± 7.399 70.370± 5.617 48.685± 3.340 1.62× 10−4

DT 41.596± 3.478 42.250± 4.931 41.111± 4.040 41.681± 3.538 1.62× 10−4

MLP 44.787± 1.809 32.250± 2.839 54.074± 2.845 43.162± 1.777 1.46× 10−4

GB 47.553± 1.069 28.750± 1.250 61.481± 1.814 45.116± 0.991 1.33× 10−4

T3C 98.723 ± 1.241 97.000 ± 2.915 100.000 ± 0 98.500 ± 1.458 −
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4 Conclusions and Future Work

This research paper introduces a novel framework for predicting both normal
kidney function and instances of acute rejection. The framework leverages di-
verse DW-MRI datasets obtained through various scanning protocols, specifi-
cally, 1.5T and 3T. This approach effectively addresses the primary challenge
of creating a system robust to variations in DW-MRI protocol across different
scanners. The framework’s remarkable sensitivity and specificity results establish
its potential as a significant tool for treatment planning and monitoring patient
responses to kidney transplants. Future work plans to broaden the study with
larger cohorts, investigate additional imaging modalities, explore the impact of
different correlation algorithms, develop an end-to-end detection framework, and
evaluate the integration of clinical biomarkers such as creatinine clearance and
serum creatinine.

Disclosure of Interests. The authors have no competing interests.
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