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Abstract. Individualized brain parcellations derived from functional MRI 
(fMRI) are essential for discerning unique functional patterns of individuals, fa-
cilitating personalized diagnoses and treatments. Unfortunately, as fMRI signals 
are inherently noisy, establishing reliable individualized parcellations typically 
necessitates long-duration fMRI scan (> 25 min), posing a major challenge and 
resulting in the exclusion of numerous short-duration fMRI scans from individu-
alized studies. To address this issue, we develop a novel Consecutive-Contrastive 
Spherical U-net (CC-SUnet) to enable the prediction of reliable individualized 
brain parcellation using short-duration fMRI data, greatly expanding its practical 
applicability. Specifically, 1) the widely used functional diffusion map (DM), 
obtained from functional connectivity, is carefully selected as the predictive fea-
ture, for its advantage in tracing the transitions between regions while reducing 
noise. To ensure a robust depiction of brain network, we propose a dual-task 
model to predict DM and cortical parcellation simultaneously, fully utilizing their 
reciprocal relationship. 2) By constructing a stepwise dataset to capture the grad-
ual changes of DM over increasing scan durations, a consecutive prediction 
framework is designed to realize the prediction from short-to-long gradually. 3) 
A stepwise-denoising-prediction module is further proposed. The noise represen-
tations are separated and replaced by the latent representations of a group-level 
diffusion map, realizing informative guidance and denoising concurrently. 4) Ad-
ditionally, an N-pair contrastive loss is introduced to strengthen the discrimina-
bility of the individualized parcellations. Extensive experimental results demon-
strated the superiority of our proposed CC-SUnet in enhancing the reliability of 
the individualized parcellation with short-duration fMRI data, thereby signifi-
cantly boosting their utility in individualized studies. 

Keywords: Individualized Brain Parcellation, Functional Diffusion Map (DM), 
Spherical U-net. 

1 Introduction 

Individualized functional brain mapping, derived from resting state functional MRI (rs-
fMRI), is vital for detecting unique neural activity in individuals [1, 2], thereby enabling 
customized diagnostic and therapeutic strategies. Recent studies have demonstrated 
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how individualized parcellations can uncover variations in functional connectivity that 
correlate with cognitive traits [3] and identify robust biomarkers for neurological dis-
orders [4-6], marking a significant shift towards individualized care [7,8]. However, 
fMRI signals, the foundational data for constructing functional connectome, inherently 
exhibit a low signal-to-noise ratio. To achieve reliable personalized brain functional 
mapping, significant research underscores the necessity for prolonged rs-fMRI sessions 
(>25 min) [9-11]. Adhering to this requirement poses significant difficulties in practical 
settings, especially for patients and young children [29]. For example, recent meta-
analyses examining rs-fMRI data for depression [12] (23 studies) and schizophrenia 
[13] (36 studies) found an average scan duration of only 6 minutes. Consequently, nu-
merous short-duration rs-fMRI datasets, whether previously collected or in progress, 
are unfortunately excluded from subject-level studies. To address this critical issue, 
existing studies have either proposed new measurements of functional connectivity [14, 
15] or utilized bagging aggregation to augment the fMRI data [16], focusing on boost-
ing reliability within the confines of short-duration scans themselves. However, they 
didn’t tackle the most crucial question: how to ensure the individualized parcellations 
derived from short-duration scans sufficiently resemble those from their corresponding 
long-duration data, thus reaching the essence of increasing the reliability.  

To bridge this gap, we develop a novel model, Consecutive-Contrastive Spherical 
U-net (CC-SUnet), to enhance the reliability of individualized brain parcellations by 
predicting long-duration data related parcellations based on short-duration rs-fMRI 
scans. Firstly, functional diffusion map (DM) [17, 18] is specially employed as the fea-
ture map of our prediction model, with its own prediction included as part of a dual task 
alongside individualized brain parcellation. By harnessing the DM's strength in captur-
ing intrinsic networks and noise reduction, along with the dual task's ability to exploit 
its reciprocal relationship with brain parcellation, we effectively integrate critical infor-
mation and mitigate noise, resulting in robust and reliable predictions. Then, to capture 
the gradual changes of DM over increasing scan durations, we construct a temporal 
stepwise dataset and design a consecutive prediction framework to realize the predic-
tion from short-to-long gradually. Since the noise in short-duration fMRI data is not 
reasonably restrained due to insufficient scan time, a stepwise-denoising-prediction 
module is further proposed to dedicatedly handle the noise. In latent space, noise chan-
nels are separated and replaced by the representations of a group-level diffusion map, 
achieving informative guidance and denoising concurrently. Finally, an N-pair contras-
tive loss is introduced to maintain the variability in individuals and strengthen the dis-
criminability of final parcellations. Experimental results showed that our proposed CC-
SUnet not only enhances the test-retest reliability of parcellations obtained from short-
duration fMRI scans but also significantly increases their similarity to those derived 
from long-duration data, greatly boosting the utility of short-duration fMRI scans. 

2 Method 

2.1 Model Description 

The framework of our proposed model, Consecutive-Contrastive Spherical U-net (CC- 
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Fig. 1. The framework of our proposed CC-SUnet model. 

SUnet), is depicted in Fig. 1 and detailed below. It constitutes the stepwise diffusion 
map (DM) dataset construction, consecutive prediction, stepwise-denoising-prediction 
module (S-Pre), and joint prediction of DM and individualized parcellation. 

Suppose we have a dataset of long-duration rs-fMRI scans and its corresponding 
individualized brain parcellations obtained from a given parcellation method [2], i.e., 
the paired samples {(𝑩!" , 𝑦!)|𝑩!" ∈ 𝑋#$,&'&×) , 𝑦! ∈ 𝑌#$,&'&×*, 𝑖 = 1,⋯ ,𝑁} , 𝑁	 is the 
number of subjects, 𝑩!" is the long-duration BOLD signals from subject 𝑖, 20,484 is 
the number of cortical vertices of the whole brain (10,242 per-hemisphere), 𝑇 is the 
frames of the scan, 𝑦! is the cortical parcellation map, and 𝑌 = {0, 1, 2,⋯ ,17}, since 
we discuss the popular 17-network functional parcellation [24] in this work. Notably, 
rather than embedding the process of the individualized parcellation for long-duration 
scans into our framework, we pre-calculate an individualized functional parcellation 
from a well-established method to serve as the ground truth. Our goal is to learn the 
mapping from short-duration DM to the brain parcellation derived from long-duration 
scans, regardless of the parcellation method used. This approach is flexible for any in-
dividualized brain parcellation method preferred by the users. 
Stepwise diffusion map (DM) dataset construction. For a long-duration scan 𝑩", a 
stepwise dataset is generated by setting a collection of time intervals {[𝑡$, 𝑠], [𝑡$, 𝑡*],
[𝑡$, 𝑡#],⋯ , [𝑡$, 𝑡+], [0, 𝐿]}, where 𝑡$ < 𝑠 < 𝑡* < 𝑡# < ⋯ < 𝑡+ < 𝐿, as shown in Fig. 2. 
𝑡$ is a random start time to build up dataset, 𝐿 is full scan time. [𝑡$, 𝑠] is set to 5 minutes 
in this study, aligning with the minimal fMRI scan duration protocols used in most 
studies. This duration captures a relatively stable brain connectome, in contrast to the 
moment-to-moment fluctuations described by dynamic FC derived from fMRI scans 
lasting 30 to 60 seconds [28]. Each time interval relates to a fMRI signal clip and its 
corresponding functional connectivity (FC) is then computed by Pearson’s correlation 
between vertices followed by Fisher z-transformation, leading to a stepwise FC dataset 
{𝑭,, 𝑭-! , ⋯,𝑭-" , 𝑭"}. Then, to align subjects, a group-level FC matrix 𝑭./0 and a joint  
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Fig. 2. The construction of training/validation/testing dataset, taking HCP dataset as an example. 

embedding strategy [19, 30] are introduced for DM computation. For an 𝑭- , 𝑡 ∈
{𝑠, 𝑡*, ⋯ , 𝑡+, 𝐿}, a joint similarity matrix 𝑾- is computed by concatenating FCs as  

𝑾- = [𝑭- , 𝑭-,./0; 𝑭-,./0) , 𝑭./0	]                                (1) 

where 𝑭-,./0  is the correlation between 𝑭./0  and 𝑭-  based on Pearson’s correlation. 
Then, the diffusion embedding algorithm [17] is applied on 𝑾-, resulting in a set of 
components as {?𝒙- , 𝒙./0A|𝒙- , 𝒙./0 ∈ ℝ#$,&'&×1}. 𝒙- and 𝒙./0 lie in a common coordi-
nate space. 𝑀 is the reduced dimension in DM space and determined by the accumu-
lated contribution of the eigenvectors. 𝑀 is set as 20 in our study. The final alignment 
of 𝒙- across individuals is determined by a Procrustes transformation between 𝒙./0 and 
the group-level DM 𝒙D./0 obtained by 𝑭./0.  

Consecutive prediction. Instead of predicting the DMs of long-duration scan from the 
brief fMRI data within one step, a consecutive prediction model is designed to realize 
a prediction chain as 𝒙, → 𝒙-! → ⋯ → 𝒙-". 𝑛 is set as 3 in our study for simplicity. 
This consecutive architecture not only captures the gradual changes of DM along with 
the increase of scan duration, but also minimizes the uncertainty in long range predic-
tion. As shown in Fig. 3, each prediction step is implemented by an S-Pre module (de-
tailed in the following section) and serves as a checkpoint to reassess conditions and 
adjust the subsequent learning. The function of S-Pre module is to predict DM 𝒙-#$! by 
the average of precedent DMs {𝒙,, 𝒙G-! , ⋯ , 𝒙G-#%! , 𝒙G-#}, denoted as 𝒙H-#, i.e., 

𝒙G-#$! = S-Pre(𝒙H-#), 𝒙H-# =
*

23*
(𝒙, +∑ 𝒙G--4-!,⋯,-# )                           (2) 

The previously predicted DM and 𝒙, are specifically included into the S-Pre to avoid 
forgetting individualized characteristics because of long distance mapping.  

 
Fig. 3. The consecutive prediction based on stepwise-denoising-prediction modules. 

Stepwise-denoising-prediction module (S-Pre). The backbone of S-Pre is a spherical 
U-net, which shares the same architecture with U-net in Euclidean space while only 
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replacing all operations with their spherical operation counterparts based on the 1-ring 
filter on icosahedron discretized spheres [20, 21]. Its advantage in extracting contextual 
and localization information on cortical surface makes it a perfect fit for parcellation 
studies. As shown in Fig. 1(c), it has an encoder path and a decoder path, each with five 
resolution steps (10,242, 2,562, 642, 162, 42). The shared encoder (Enc) is composed 
of 5 spherical convolution blocks and 4 spherical pooling layers. Each convolution 
block is constituted of one 1-ring convolution layer, one group normalization layer and 
one linear layer with LeakyReLU as its activation function. Then the shared decoder 
(Dec) is composed of repetitive spherical convolutions and transposed convolutions 
and to generate the outputs from the feature maps generated in the encoder.  
    Compared with long-duration scans, the main issue of short-duration scans is the 
inherent noise, which is not reasonably restrained by enough scan time. To address this 
challenge, we propose to separate the noise in the latent space and replace it with group-
level DM latent representation as guidance. Specifically, in S-Pre, the encoded repre-
sentation of 𝒙H-#, 𝒛-#, is first separated into two parts: 𝑛𝑜𝑖𝑠𝑒(𝒛-#) and 𝑖𝑛𝑓𝑜(𝒛-#). Then, 
𝑛𝑜𝑖𝑠𝑒(𝒛-#) is discarded and replaced by 𝒛./0 = 𝑐𝑜𝑛𝑣(EncY𝒙./0Z). Of note, instead of 
directly concatenating 𝒛./0  to 𝒛-# , a part of 𝒛-#  is separated and removed as 
𝑛𝑜𝑖𝑠𝑒(𝒛-#), aiming to eliminating mixed noise information in 𝒛-#.  𝑐𝑜𝑛𝑣(∙) is a convo-
lution layer to adjust the channel number of EncY𝒙./0Z to match with the noise. We set 
the dimension of 𝒛-# , 𝑛𝑜𝑖𝑠𝑒(𝒛-#)  , 𝑖𝑛𝑓𝑜(𝒛-#) , and 𝑐𝑜𝑛𝑣(EncY𝒙./0Z)  as 42x256, 
42x64, 42x192, and 42x64 in our study. Furthermore, the concatenation of  𝑖𝑛𝑓𝑜(𝒛-#), 
and 𝑐𝑜𝑛𝑣(EncY𝒙./0Z) passes through a learnable mask layer with 𝑊 as its weights, 
allowing the decoder Dec to focus on the most relevant information thus enforcing the 
effect of denoising. The main idea of S-Pre is described as follows, 

 𝒙G-#$! = Dec ^𝑊 ∙ _𝑖𝑛𝑓𝑜 ^EncY𝒙H-#Z` , 𝑐𝑜𝑛𝑣 ^𝐄𝐧𝐜Y𝒙./0Z`d` (3) 

Joint prediction of DM and individualized parcellation. To avoid intermediate par-
cellations obtained from noisy DM interfere the denoising process, the task of the indi-
vidualized parcellation is only included into the dual-task module until the DM of the 
last intermediate timepoint 𝑡+ is predicted. The input of the dual task module is 𝒙H-", 
which is the average of {𝒙,, 𝒙G-! , ⋯ , 𝒙G-"%! , 𝒙G-"}. As shown in Fig. 1(b), after encoded 
with the shared encoder Enc and a denoising layer, the embedded features are fed into 
two branches, long-duration DM prediction and individualized parcellation, separately. 
The two branches are composed of a learnable mask layer (𝑊"/𝑊06/7) and a decoder 
(D𝑳 /D𝒑𝒂𝒓𝒄), sharing the same framework of the ones described in S-Pre. Thus, the final 
prediction 𝒙G" and 𝑦e are obtained and shown as follows:  

𝒙G" = D𝑳Y𝑊" ∙ 𝒛-"Z, 𝑦e = D𝒑𝒂𝒓𝒄Y𝑊06/7 ∙ 𝒛-"Z                         (4) 

𝒛-" ≜ _𝑖𝑛𝑓𝑜 ^EncY𝒙H-"Z` , 𝑐𝑜𝑛𝑣 ^𝐄𝐧𝐜Y𝒙./0Z`d                          (5) 

Prediction loss. The predicted DM is evaluated with Pearson’s correlation coefficient 
(PCC) and mean squared error (MSE), while the difference between the predicted and 
expected individualized parcellation is measured by weighted cross entropy loss.  
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Specifically, DM prediction loss is defined as 

ℒ=1>?? =
*

+3*
∑ 𝔼@(1 − 𝑐𝑜𝑟𝑟(𝒙- , 𝒙G-))𝒙𝒕4𝒙𝒕𝟏 ,⋯,𝒙𝒕𝒏 ,𝒙𝑳

                      (6) 

ℒ=11BC =
*

+3*
∑ 𝔼@(‖𝒙- −	𝒙G-‖##)𝒙𝒕4𝒙𝒕𝟏 ,⋯,𝒙𝒕𝒏 ,𝒙𝑳

                              (7) 

ℒ=1 = 𝜆ℒ=11BC + ℒ=1>?? , 𝜆 is a trade-off parameter                        (8) 
The weighted cross entropy loss is defined as 

 ℒ06/7 = −𝔼@(𝑤7log	 q
DEF(>(7|@))

∑ DEF(>(K|@))*
+,!

r)                                         (9) 

where 𝑣 is a vertex on the surface, 𝑐 is the parcellation label, 𝐶 is the total network 
number in 𝑦 and equals to 17 in our study, 𝑃(𝑗|𝑣) is the probability of 𝑣 being pre-
dicted as network 𝑗, 𝑤7 is the inverse of the area of 𝑐-L network in 𝑦, 𝔼 is the expecta-
tion across the whole cortical surface. 
N-pair contrastive loss. In individualized parcellation, test-retest similarity and inter-
subject variability hold equal importance. The former ensures reliability, while the lat-
ter guarantees distinguishability. During learning, a mini-batch N-pair loss [25] is in-
troduced to boost test-retest similarity and inter-subject variability simultaneously. For 
the short-duration DM 𝒙,!  of subject 𝑖, taken as the anchor and obtained from the fMRI 
signal clip from the time interval [𝑡$, 𝑠], its positive example is designed as {𝒙,M! }, 
where 𝒙,M!  is the DM of time intervals [𝑡$ + Δ, 𝑠 + Δ].	Δ	is set as 15 minutes in our 
study. 𝒙,!  and 𝒙,M!  will be enforced to be similar in the embedding space and lead to the 
same prediction since they are from the same subject. The negative examples of  𝒙,!  are 
defined as {𝒙,

K|𝑗 ≠ 𝑖}. Thus, the N-pair contrastive loss is defined as  

ℒ7N+-/6 = −∑ ∑ q𝑤!K log q
DEFOPQRST-+U

∑ DEF(PQRST-#).
#,!

rr	V
K4*

V
!4*                                (10) 

logit!! = z
𝒛,!

‖𝒛,!‖#
{ ∙ |

𝒛,*!

}𝒛,M! }#
~ ,			logit!K,KW! = z

𝒛,!

‖𝒛,!‖#
{ ∙ |

𝒛,
K

}𝒛,
K}

#

~ 

where 𝒛,! , 𝒛,M! 	and 𝒛,
K are corresponding embedding of 𝒙,! , 𝒙,M! 	and 𝒙,

K  in the dual-task 
module, 𝐾 is the batch size, and  𝑤!K equals to 0 when 𝑗 ≠ 𝑖 or 1 otherwise.  
Full objective. Combining DM prediction loss, parcellation loss, and contrastive loss, 
the full loss is written as: 

ℒ=1 = 𝛽ℒ=1 + 𝛾ℒ06/7 + ℒ7N+-/6                             (11) 
where 𝛽 and 𝛾 are trade-off parameters. 

2.2 Model Evaluation 

For the given dataset {(𝒙!" , 𝑦!)|	𝑖 = 1,⋯ ,𝑁}, the predicted DM is evaluated by Pear-
son’s correlation coefficient (PCC) and mean absolute error (MSE). The predicted in-
dividualized parcellation is evaluated by following measures: 1) validity of the parcel-
lation: measured by the dice similarity coefficient (DSC) between the expected brain 
parcellation 𝑦! obtained by long-duration rs-fMRI scan and the predicted parcellation 
𝑦e! from the short-duration scan,  
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Validity= *
X
∑ DSC(𝑦! , 𝑦e!)𝑵
𝒊4𝟏 = *

X
∑ ^ *

*\
∑ #∙|^-(7)∩^̀-(7)|

|^-(7)|3|^̀-(7)|
*\
74* `X

!4*                 (12) 

2) Test-retest reliability: measured by the DSC between the predicted parcellation 𝑦e! 
and 𝑦e!∆ obtained from the positive pair 𝒙,!  and 𝒙,M! , respectively. 3) Inter-subject var-
iability: measured by the DSC between the predicted parcellation 𝑦e!  and 𝑦eK  (𝑗 ≠ 𝑖). 
The effect size of the variability is measured by Cohen’s d [26]. 4) Homogeneity 
(Homo): measured by the consistency of the functional connectivity patterns within 
each network, i.e., averaged Pearson’s correlations of fMRI signals between all pairs 
of vertices within each network, adjusted for the network size. 

3 Experiments 

3.1 Data Description 

The experimental data was from the HCP S900 data release [22]. 350 subjects (180 
female, age range 22–35 years) were used in this study. 200, 50, and 100 subjects are 
partitioned as training, validation, and testing dataset. Group-level DM was computed 
from the training set. Each participant underwent two fMRI sessions on two different 
days and acquired 60-minute rs-fMRI in total. The “ICA-FIX” denoised fMRI data 
were preprocessed in the HCP pipeline using FSL,FreeSurfer, and Connectome Work-
bench’s functions [27]. Each subject's preprocessed rs-fMRI data were resampled to a 
standard cortical surface (fsaverage5) with 10,242 vertices on each hemisphere. The 
long-duration parcellation was obtained by using an iterative algorithm [2]. The model, 
once trained on the HCP dataset, was further evaluated using the Midnight Club dataset 
(MSC) [23] to assess its applicability of enforcing the reliability of individualized par-
cellation with short-duration scan on an independent dataset. There are 10 subjects in 
the MSC dataset, and each has 5 hours of rs-fMRI scan. During testing, the rs-fMRI 
scan of each subject was segmented into extremely short non-overlapping 2-min data 
and the expected parcellation and DM were generated with the corresponding full scan.  

3.2 Validation of CC-SUnet 

We compared the proposed CC-SUnet model with the following six methods including 
four well recognized methods: (1) the original results obtained from short-duration scan 
(None) using the original method in [2]; (2) U-net (U-net), sharing the same settings as 
CC-SUnet, while only changing operations on icosahedron discretized spheres to Eu-
clidean space; (3) Autoencoder with convolution operation (AE-CNN), sharing the 
same settings as U-net but removing the skip connection; (4) Multilayer Perceptron 
network (MLP); Two models derived from our CC-SUnet for validating our proposed 
strategies, including: (5) without contrastive loss (CC-SUnet_w/o C); (6) without con-
secutive prediction framework (CC-SUnet_direct).  
All models were implemented with PyTorch and optimized with Adam algorithm 
alongside a strategy of reducing the learning rate once validity dice stagnates for 2 
epochs. The initial learning rate was 0.001, the batch size was set as 5, 𝜆 = 𝛽 = 1, and 
𝛾 = 1.1. The comparison results are reported in Table 1 and visualized in Fig. 4. Our 
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CC-SUnet model outperformed other competing methods by increasing the reliability 
of the parcellation from 0.543 to 0.845 and the validity from 0.619 to 0.772. When 
removing the contrastive loss or the consecutive prediction architecture, the accuracy 
of the model was reduced, further validating the effectiveness of the proposed strate-
gies. Notably, the low variability (0.375) of the original method (None) is mainly due 
to noise dominance, while AE-CNN's high reliability (0.938) is attributed to its con-
sistent parcellations, see Fig. 4. We further tested the utility of the trained model on the 
MSC dataset. As depicted in Table 2, even with all the parameters frozen, the reliability 
of the individualized parcellation was improved from 0.592 to 0.800, while increasing 
the validity, Cohen’s d, and homogeneity of the parcellation concurrently. Of note, with 
the original method (None), the homogeneity of individualized parcellation obtained 
from the MSC data is 0.269. This value is higher than that obtained from the HCP data, 
likely due to site effects, and does not hold significant meaning in our comparison. 

Table 1. The comparison of CC-SUnet with six competing methods on HCP dataset. (Short du-
ration scans of 5-minute data. Mean values are reported, ¯ means the lower value is better) 

 DM Prediction Individualized Parcellation Prediction 
 PCC MSE¯ Validity Reliability Variability¯ Cohen’s d Homo 

None 0.684 0.071 0.619 0.543 0.375 0.682 0.115 

U-net 0.815 0.034 0.735 0.824 0.712 0.577 0.122 
AE-CNN 0.716 0.049 0.678 0.938 0.925 0.015 0.106 

MLP 0.752 0.038 0.553 0.508 0.354 0.578 0.101 

C-SUnet_w/o C 0.855 0.028 0.770 0.843 0.709 0.752 0.125 
CC-SUnet_direct 0.797 0.036 0.761 0.828 0.698 0.720 0.123 

Our CC-SUnet 0.865 0.026 0.772 0.845 0.681 0.795 0.131 

Table 2. The validation of trained CC-SUnet on the independent MSC dataset (extremely short 
duration scans of only 2-minute data). 

 DM Prediction Individualized Parcellation Prediction 
 PCC  MSE¯ Validity Reliability Variability¯ Cohen’s d Homo 

None 0.765 0.056 0.653 0.592 0.455 0.615 0.269 

CC-SUnet 0.792 0.048 0.760 0.800 0.676 0.652 0.295 

4 Conclusion 

In this study, we proposed the Consecutive-Contrastive Spherical U-net (CC-SUnet), a 
novel framework designed unprecedentedly to realize the prediction of long-duration 
scan derived individualized brain parcellation using short-duration fMRI scans. Exper-
imental results demonstrate CC-SUnet's remarkable effectiveness in improving the 
validity, reliability, and variability, significantly advancing the application of short  
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Fig. 4. The visual comparison of the predicted individualized brain parcellation of two random 
subjects in HCP. Our proposed CC-SUnet significantly increased the marginal sharpness, the 
within-network consistency, and the similarity with the parcellations derived by long-duration 
scans, while maintained the personalized characteristics as indicating by white arrows.  

duration fMRI in individualized studies. This model greatly facilitates the broader use 
of existing large amount of low-quality fMRI for research at personalized level, espe-
cially beneficial for patients and children previously excluded due to scan duration con-
straints. With the proposed consecutive prediction strategy, our model also sheds light 
on denoising and quality enhancement of other fMRI-related individualized studies. 
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