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Abstract. Supervised deep learning techniques can be used to generate syn-
thetic 7T MRIs from 3T MRI inputs. This image enhancement process leverages 
the advantages of ultra-high-field MRI to improve the signal-to-noise and con-
trast-to-noise ratios of 3T acquisitions. In this paper, we introduce multiple novel 
7T synthesization algorithms based on custom-designed variants of the V-Net 
convolutional neural network. We demonstrate that the V-Net based model has 
superior performance in enhancing both single-site and multi-site MRI datasets 
compared to the existing benchmark model. When trained on 3T-7T MRI pairs 
from 8 subjects with mild Traumatic Brain Injury (TBI), our model achieves 
state-of-the-art 7T synthesization performance. Compared to previous works, 
synthetic 7T images generated from our pipeline also display superior enhance-
ment of pathological tissue. Additionally, we implement and test a data augmen-
tation scheme for training models that are robust to variations in the input distri-
bution. This allows synthetic 7T models to accommodate intra-scanner and inter-
scanner variability in multisite datasets. On a harmonized dataset consisting of 
18 3T-7T MRI pairs from two institutions, including both healthy subjects and 
those with mild TBI, our model maintains its performance and can generalize to 
3T MRI inputs with lower resolution. Our findings demonstrate the promise of 
V-Net based models for MRI enhancement and offer a preliminary probe into 
improving the generalizability of synthetic 7T models with data augmentation. 

Keywords: Supervised Image Enhancement, Magnetic Resonance Imaging, 
Data Generalizability 

1 Introduction 

There has been growing interest in testing the clinical advantages of Ultra-high-field 
Magnetic Resonance Imaging (MRI) at 7 Tesla (T) over high-field MRI at 3T. Many 
studies have shown that 7T MRIs have advantages in delineating anatomical structures 
that are relevant for identifying and monitoring pathological tissue [14]. For example, 
compared to 3T MRIs, 7T acquisitions can lead to better parcellations of subcortical 
structure and increase lesion conspicuity [20]. Recent studies have demonstrated the 
promise of 7T MRIs in assessing neurological disorders such as Epilepsy [26], Multiple 
Sclerosis [22], Parkinson’s disease [27] , Alzheimer’s disease [23], and Traumatic brain 
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injury [11]. For context, a visual comparison of lesion tissues in a mild TBI patient 
imaged across different field strengths is given in Fig. 1, which illustrates how 7T ac-
quisition can be superior for delineating pathological features. While there is clinical 
value behind 7T neuroimaging, the availability of 7T MRI scanners is limited. Cur-
rently there are 109 reported 7T MRI scanners in the world, and they are concentrated 
in developed nations [10]. 

To make the clinical advantage of 7T neuroimaging more accessible, there have been 
attempts to construct algorithms that can enhance 3T MRIs to a 7T-like state by lever-
aging paired 3T and 7T MRIs [2, 3, 7, 13, 24, 29]. These studies have primarily focused 
on T1-weighted (T1w) MRIs [2, 3, 24] and Diffusion/Diffusion-weighted MRIs [5, 7, 
13]. Other studies have attempted similar transformation tasks for MRIs acquired at 
lower field strengths, such as enhancing 0.36T MRIs to 1.5T/3T MRIs [17]. Specifi-
cally, the WATNet [24] model currently achieves state-of-the-art performance in syn-
thesizing T1w 7T MRI. This model is based on an encoder-decoder 2D convolutional 
neural network fused with wavelet-based feature injection. We have selected WATNet 
as the benchmark for making performance comparisons in this study. 

 

Fig. 1. Comparison of T1w MRIs from a TBI patient imaged at 3T (left) and 7T(right). 
White matter lesions and subcortical microbleeds are more visible in the 7T scan. 

Current studies on synthetic 7T generation do not present evaluations based on 
pathological tissue features. This is limiting for assessing the clinical value of synthetic 
7T because the advantage of 7T imaging lies in its depiction of pathological tissue. As 
such, we believe the construction and assessment of a synthetic-7T model is best con-
ducted in a setting where a discernible amount of pathological tissue is present. To 
address this limitation, we perform evaluations on a 3T-7T dataset consisting of patients 
diagnosed with mild traumatic brain injury (TBI) in conjunction with a public dataset 
consisting of healthy subjects. Since TBI leads to visible pathological features such as 
white matter lesions and traumatic microbleeds [18], studying synthetic 7T generation 
with a TBI dataset offers a novel look on the clinical value of synthetic 7T images. 

Input heterogeneity has also not been sufficiently explored in the context of synthetic 
7T generation. Due to differences in acquisition protocols and unwanted inter-scanner 
variabilities across data collection sites [28], deep learning models intended for MRI 
applications should have a degree of generalizability to input variation. To address this, 
we implemented a custom data augmentation scheme to construct a synthetic-7T model 
that, based on our assessment, is robust to degradation of the input MRI. This data 
augmentation can enable future studies on larger multi-site datasets. 

Our main contributions in this study are three folds: (1) Multiple novel variants of 
V-Net model for 3T-to-7T enhancement of T1w MRIs, leading to state-of-the-art per-
formance. (2) The first qualitative evaluation of pathological tissue enhancement via 
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synthetic 7T generation. (3) Demonstrating model generalizability to low-resolution 
MRIs by utilizing a multisite dataset with a custom data augmentation scheme.  

Our code for this study is freely available at:  
https://github.com/abbasilab/Synthetic_7T_MRI 

2 Method 

We designed and trained three V-Net based models and one WATNet model for syn-
thetic-7T generation. All models were implemented in PyTorch and trained with 2 
Nvidia 4090 GPUs. Both the WATNet model and the V-Net model were trained with 
mean absolute error (MAE) as the objective function. MAE loss is preferable to mean 
squared error (MSE) for 3T-to-7T image enhancement, since 7T images in our dataset 
contain stronger vascular pulsation artifacts. In addition, there has been evidence that 
7T MRIs are more prone to other forms of artifacts [15]. These artifacts manifest as 
signal hyperintensities that will heavily influence the loss if MSE is used as the objec-
tive function instead of MAE. For a given 3T image, I3T, a ground truth 7T image, I7T, 
and a synthetic-7T model, G, the MAE loss is defined as:  

𝐿 =
1

𝑛
|𝐼 − 𝐺(𝐼 )|                                           (1) 

V-Net. We implemented a 5-layer V-Net Model [19] with a modified decoder branch 
where we changed the transposed convolutions to nearest neighbor upsampling. The V-
Net model utilizes 3D convolutions, with skip connections across layers in the encoder 
and decoder branches. The V-Net model is trained with the MAE loss. We utilize near-
est neighbor upsampling instead of transposed convolutions for deconvolution since 
using the latter often results in “checkerboard” artifacts in the predicted images [21]. 

Perceptual V-Net. We implemented a perceptual V-Net by extracting perceptual loss 
from the encoding branch of the SynthSeg model. The perceptual V-Net is similar to 
the SRResNet in the SRGAN paper [16], where a baseline deep learning model is aug-
mented with a perceptual loss for enhancing the perceptual quality of images. The orig-
inal SRGAN design used the VGG network for extracting perceptual loss. However, 
the VGG model was trained for natural image classification rather than a task adjacent 
to medical imaging. Thus, we hypothesize that the hidden state representation of 
SynthSeg is a more robust feature extractor for brain MRIs, since SynthSeg is a deep 
learning model trained to generate brain segmentation maps in a contrast-agnostic and 
resolution-agnostic fashion [4]. We define SynthSeg loss as the output of the 3rd layer 
in the encoding branch of the SynthSeg Model. Given a synthetic-7T generation model, 
G, an input 3T image, I3T, and a 7T image, I7T, SynthSeg loss is defined as: 

𝐿 =  
1

𝑛
𝑆𝑦𝑛𝑡ℎ𝑆𝑒𝑔 (𝐼 ) − 𝑆𝑦𝑛𝑡ℎ𝑆𝑒𝑔 𝐺(𝐼 )        (2) 

The sum of LMAE and LSynthSeg is used for training the perceptual V-Net. 
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V-Net-GAN. We also constructed a generative adversarial V-Net model for synthetic 
7T generation. The principle of V-Net-GAN’s design is similar to SRGAN in the use 
of perceptual loss functions, but the two models have different architectural choices. 
The generator architecture of V-Net GAN is a V-Net, and the discriminator is a “half” 
V-Net truncated at the bottleneck. The output of the truncated V-Net is passed through 
a global sum pooling layer, a ReLu layer, and a linear layer for the discriminator’s 
decision output. We also use the Wasserstein GAN loss for more stable model conver-
gence [1]. Given a discriminator model, D, and a generator model, G, the adversarial 
loss is defined as: 

𝐿 =  −
1

𝑛
𝐷(𝐼 ) −

1

𝑛
𝐷 𝐺(𝐼 )                            (3) 

The sum of LMAE, LSynthSeg, Ladv is used for training the V-Net-GAN. 

WATNet. We used the WATNet architecture [24] as the current benchmark for 7T 
synthesization. The WATNet model is a 2D convolutional model that utilizes wavelet-
based feature extraction. The wavelet features are injected into the encoder branch of 
the model to allow for fusion of information across the spatial and wavelet domains. 
We re-implemented the WATNet model in PyTorch to enable training with more recent 
GPUs. It is worth noting that in the original implementation of WATNet in Caffe, the 
convolution operation is designed in 2D only. To incorporate the 3D spatial infor-
mation, the original WATNet implementation used 3 adjacent MRI slices as 3 separate 
input channels. We replicated this design choice for an accurate re-implementation of 
the original model. WATNet is trained with the MAE loss. 

3 Experimental Design 

Dataset. Our primary dataset contains imaging data from subjects (n=8) diagnosed with 
mild TBI. The dataset was collected at the University of California, San Francisco. This 
dataset consists of T1w MPRAGE images with an isotropic resolution of 0.8mm col-
lected at a 3T Siemens Skyra scanner and T1w MP2RAGE images with an isotropic 
resolution of 0.7mm collected at a 7T Siemens Magnetom scanner. In addition to this 
dataset, we also assembled a multisite dataset (n=18) by harmonizing the primary TBI 
dataset with a publicly available dataset of paired 3T-7T MRIs collected from healthy 
subjects (n=10) [6]. This second dataset contains T1w MPRAGE images with an iso-
tropic resolution of 0.8mm collected at a 3T Siemens Magnetom Prisma scanner, and 
T1w MP2RAGE images with an isotropic resolution of 0.65mm collected at a 7T Sie-
mens Magnetom scanner. To account for inter-scanner variability we used the RAVEL 
[8] harmonization algorithm for both intensity normalization and removal of undesira-
ble inter-subject technical variabilities across the two datasets. During preprocessing, 
all images were aligned to a 0.7mm MNI-152 template, and each 3T image was aligned 
to their 7T counterpart with affine transformation using  the FSL FLIRT toolbox [12]. 
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Data augmentation. To construct a model with greater generalizability, we imple-
mented a data augmentation scheme aimed at simulating a wider range of input distri-
butions. We applied data augmentation when training with the harmonized dataset. 
Prior to training, every image pair in the training set was augmented with two trans-
formed 3T-7T pairs based on the following transformations: (1) random flip along the 
coronal or sagittal plane. (2) -20 to 20 degree rotation in any direction (3) random elastic 
deformation. Additionally, we applied the following transformation to 3T images only: 
(1) Gamma correction with a random γ value ranging from e-0.3 to e0.3. (2) Resolution 
downsampling with a scale factor ranging from 1 to 5, followed by resampling to the 
original resolution. We appended the augmented image pairs to the original training set, 
resulting in 45 training image pairs for each fold in the 6-fold cross validation analysis. 

Training details. Images were broken down into patches during training. For models 
based on the V-Net architecture, the patch size was 64x64x64, with a batch size of 40. 
For the WATNet model, the patch size was 64x64x3, with a batch size of 128. Models 
were trained using the ADAM optimizer. When training without data augmentation, all 
models were trained for 300 epochs. When training with data augmentation, all models 
were trained for 500 epochs. We used a learning rate of 1e-3 for the V-Net models and 
a learning rate of 1e-4 for the WATNet model. 

Evaluation. We performed quantitative evaluation of the model with peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM). For the models 
trained with data augmentation, we also generated synthetic-7T images from downsam-
pled inputs. This is aimed at simulating 3T acquisitions with lower quality. Addition-
ally, we use the SynthSeg model to generate multi-class brain segmentations for syn-
thetic and ground truth 7T images. We calculate the multiclass dice coefficient as an 
alternative metric to gauge the quality of synthetic 7T images. 

For comparing performance across all four model architectures, we train each model 
on the TBI dataset and perform leave-one-out cross validation. Additionally, we assess 
the WATNet and V-Net model’s ability for data generalization by training them on the 
harmonized dataset with our data augmentation scheme. Due to limited compute capac-
ity, we performed 6-fold cross validation for the second evaluation. All quantitative 
performance metrics in this study are reported based on the cross-validation analyses. 
For qualitative assessment, we used final models trained on all available data for gen-
erating image predictions. 

4 Results 

4.1 Our V-Net based model for 7T MRI synthesization archives state-
of-the-art performance 

The V-Net based model (SSIM: 0.914±0.016, PSNR: 25.60±0.77) outperforms the 
benchmark WATNet model (SSIM: 0.881±0.008, PSNR: 23.60±0.37) in all three 
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performance metrics (Fig. 2). The WATNet prediction has an SSIM value that closely 
approximates the WATNet performance reported in [24] (SSIM of 0.878). 

The performance metric of the perceptual V-Net model with SynthSeg loss (V-Net-
SSeg) (SSIM: 0.908±0.011, PSNR: 25.51±0.74) is lower than V-Net, and the perfor-
mance metric of the V-Net-GAN (SSIM: 0.899±0.012, PSNR: 24.33±0.93) is lower 
than both the V-Net and V-Net-SSeg, but both models outperform the WATNet model. 
The performance drop of V-Net-SSeg and V-Net-GAN compared to the V-Net model 
is expected considering similar performance drops seen in natural image super-resolu-
tion with SRGAN, where improvements in perceptual quality can lead to hallucinations 
that decrease the quantitative measures of similarity to the ground truth [16]. Multiclass 
dice coefficients calculated based on SynthSeg brain segmentation indicate that V-Net 
and V-Net-SSeg have comparable segmentation performance (Fig. 2C). This suggests 
that the enhancement of tissue boundaries may be comparable across the two model 
variants.  

 

Fig. 2. Violin plots of the quantitative performance metrics across models. Individual data-
points represent model performance from one cross-validation fold. A) SSIM metrics. B) PSNR 
metrics. C) Multi-class Dice scores between segmentations generated from synthetic 7Ts and 
natural 7Ts. 

4.2 Qualitative evaluation of pathological tissue enhancement via 
synthetic 7T generation 

We provide a qualitative comparison of model outputs for patients with mild TBI to 
investigate how well synthetic-7T models enhance pathological tissue (Fig. 3, addi-
tional examples in Supplemental Materials). In Fig. 3, we selected an example region 
with white matter lesions and microbleeds in subcortical areas. In this case, there are 
two qualitative features of interest. First, the conspicuity of pathological tissue is higher 
in 7T images. This is evident in the separation of adjacent lesions and the sharper con-
tour of subcortical microbleeds. Additionally, the 7T image better captures the hetero-
geneity within white matter lesions. This heterogeneity can be a useful clinical signal 
in neurodegenerative disorders such as multiple sclerosis. For example, previous stud-
ies have found that the heterogeneity within lesions can be used for elucidating lesion 
structure and improving diagnostic accuracy [25]. In the example presented in Fig. 3, 
it is evident that all V-Net based architectures outperform the WATNet for capturing 
both tissue conspicuity and lesion heterogeneity. The differences across the three V-
Net-based models are more nuanced, but in this case, the V-Net-GAN model performs 
better for capturing smaller structural details such as the lesion feature highlighted in 
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blue and the shape of microbleeds highlighted in cyan. Additional qualitative compar-
isons of model predictions are presented in the Supplemental Materials. 

 

Fig. 3. Qualitative comparison of synthetic 7T images in a subject with mild TBI. The bound-
ing box highlights white matter lesions (in blue) and subcortical microbleeds (in cyan). 

4.3 Model generalizability to low-resolution MRI input 

To test the ability of models to generalize to different input distributions, we also trained 
the WATNet and V-Net models on a harmonized dataset (n=18, both TBI and healthy 
subjects) in combination with data augmentation. In this training scenario, both archi-
tectures are capable of generalizing to downsampled inputs without significant perfor-
mance drops (Fig. 4A & 4B, detailed quantitative values are presented in Supple-
mental Materials). However, V-Net retains a qualitative advantage over WATNet and 
enhances pathology with more fidelity when generalizing to lower input resolutions. 
This is evident in the qualitative comparison based on a TBI subject (Fig. 5, additional 
examples in Supplemental Materials). In this example, the WATNet prediction blurs 
the boundary of the lesion tissue even when the input is at its original resolution. This 
effect is exacerbated when the input is downsampled by a factor of two, and the syn-
thetic 7T image displays a distortion of the lesion tissue highlighted in blue. In contrast, 
the V-Net model generates synthetic 7T images with high lesion conspicuity both at the 
original input resolution and at a downsampled resolution.  
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Fig. 4. Violin plots comparing synthetic 7T performance between original and downsam-
pled inputs. Individual datapoints represent model performance from one cross-validation fold.  
Both models are trained on the harmonized dataset with data augmentation. A) WATNet metrics. 
B) V-Net metrics.  

 

Fig. 5. Comparison of model predictions from a TBI patient. Input image resolution is 
downsampled by a factor of 2 in the downsampled scenario.  

5 Conclusion and Future work 

In this work, we presented a V-Net based algorithm for enhancing 3T MRIs by synthe-
sizing 7T acquisitions that approximate natural 7T MRIs. On a dataset of paired 3T-7T 
MRIs from patients with mild TBI, our method achieves a superior performance com-
pared to WATNet, the current state-of-the-art architecture for synthetic 7T generation. 
Additionally, our model enhances pathological tissue with more fidelity for clinically 
relevant insights. Our qualitative assessment on pathological tissue enhancement is a 
new step towards evaluating clinical applications of synthetic 7T models.  

While synthesization techniques based on machine learning frameworks demon-
strate remarkable performance, their application in clinical settings require extensive 
validation. Our qualitative assessment of the generated images is the first step towards 
this goal, but future work should include formal quantification of model hallucination 
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and uncertainty. This is possible through extensive clinical assessment of model find-
ings and clinical rating of model-generated images.  

Our models in this study were trained on T1w images for synthetic 7T generation, 
however, clinical use cases often involve viewing multiple MR contrasts in conjunc-
tion. Overcoming this limitation requires collecting 3T-7T data pairs at multiple con-
trasts which should be the focus of future data collection efforts. Another potential chal-
lenge in 7T MRI synthesization from 3T acquisitions is the accurate alignment of 3T 
images to corresponding 7T ones. This is primarily due to the structural differences and 
varying degrees of artifacts between 3T and 7T MRIs. Future studies on deep-learning-
based registration methods (e.g., [9]) that are more contrast agnostic and robust to struc-
tural variations could lead to more robust synthetic 7T generation pipelines. 
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