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Abstract. Accurate segmentation of the aortic valve (AV) in computed
tomography (CT) scans is crucial for assessing AV disease severity and
identifying patients who may benefit from interventional treatments,
such as surgical and percutaneous procedures. Evaluation of AV calcium
score on non-contrast CT scans emphasizes the importance of identify-
ing AV from these scans. However, it is not a trivial task due to the ex-
tremely low visibility of AV in this type of medical images. In this paper,
we propose a method for semi-automatic generation of Ground Truth
(GT) data for this problem based on image registration. In a weakly-
supervised learning process, we train neural network models capable of
accurate segmentation of AV based exclusively on non-contrast CT scans.
We also present a novel approach for the evaluation of segmentation ac-
curacy, based on per-patient, rigid registration of masks segmented in
contrast and non-contrast images. Evaluation on an open-source dataset
demonstrates that our model can identify AV with a mean error of less
than 1mm, suggesting significant potential for clinical application. In
particular, the model can be used to enhance end-to-end deep learning
approaches for AV calcium scoring by offering substantial accuracy im-
provements and increasing the explainability. Furthermore, it contributes
to lowering the rate of false positives in coronary artery calcium scoring
through the meticulous exclusion of aortic root calcifications.

Keywords: Aortic valve · Non-contrast CT · Weakly-supervised learn-
ing · Image registration · Calcium scoring.
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1 Introduction

Computed tomography (CT) angiography serves as a fundamental diagnostic
tool for evaluating aortic pathologies, including the aortic valve (AV) and aor-
tic root. This imaging technique is crucial for assessing the severity of diseases
and identifying patients who may benefit from interventional treatments, such
as surgical and percutaneous procedures. High-quality delineation of the AV
and aortic root on CT images is essential for effective treatment planning and
ensuring optimal patient outcomes. By providing detailed images and accurate
segmentation of these structures, CT facilitates the selection of patients requiring
interventions and the choice of the most suitable treatment option [1, 18].

Non-contrast CTs could be used for straightforward identification of calcifica-
tions, but distinguishing between the aorta, coronary arteries, and surrounding
tissues is challenging due to their similar radiological densities. This similarity
complicates the clear visualization of vascular structures and heart chambers.
Contrast CT imaging, by enhancing the contrast between these vessels and sur-
rounding tissues, notably improves their visibility, albeit with less emphasis on
calcifications, which are more prominently detected in non-contrast CT.

Beside of applications in identification of AV calcifications [7], the segmen-
tation of the aorta is crucial for accurately computing the Agatston score, a key
metric in assessing coronary artery disease. The ability to automatically iden-
tify the aorta’s location, including the aortic root, is vital for calcium scoring
approaches based on anatomical information [15, 17] as well as for attributing
calcified plaques to specific coronary vessels. Moreover, recent studies [10] indi-
cate the potential value of non-contrast AV segmentation in radiation therapy
planning concerning regions close to the heart, e.g., in the case of breast or lung
cancer, as the exposure to radiation of selected heart substructures can increase
the risk of cardiotoxicity to a different extent. Nevertheless, existing machine
learning (ML) models capable of non-contrast CT segmentation are limited to
identifying the aorta’s location outside the pericardium [14]. This study aims to
fill this gap by evaluating the feasibility of using non-contrast CT scans and the
nnU-Net framework [8] for comprehensive aorta segmentation.

2 Context and Contribution

In this section, the state of the art in AV segmentation is given. The section is
split into two parts. First, we focus on the approaches targeting accurate AV seg-
mentation for the tasks related to treatment planning, including both operative
interventions, done typically based on contrast-enhanced CT, and alternative
applications, e.g., in radiation therapy of organs close to the heart. The sec-
ond part deals with the methods developed specifically for AV calcium scoring,
where moderate AV segmentation quality is often accepted, and usually consti-
tutes only an intermediate step of a larger framework. The section is concluded
with a summary of the most important contributions of our work.
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2.1 Related Work

Aortic Valve Segmentation Methods The literature on AV segmentation has pre-
dominantly targeted scans with contrast enhancement. In their 2020 study, Pak
et al. [18] approached AV segmentation as a multi-class task, differentiating
each leaflet as an individual category. Additionally, Aoyama et al. [1] elevated
the approach by integrating landmark localization along with the prediction of
a segmentation map. While the aforementioned studies have concentrated on
tricuspid valves, the methodology was extended in [24] to incorporate multi-
segmentation of bicuspid valves. Furthermore, Pak et al. [19] demonstrated that
AV segmentation can be effectively addressed as a mesh prediction problem.

In the context of non-contrast CT, Jin et al. [10] conducted segmentation of
the AV alongside eight additional cardiac structures, including heart chambers,
valves, and the coronary artery. However, the precise demarcation of the AV
segmentation is ambiguous, leading to suboptimal segmentation outcomes.

Aortic Valve Segmentation for Calcium Scoring An important application mo-
tivating the development of the methods proposed here is the evaluation of AV
calcification, which enables the assessment of aortic stenosis severity in cases
where Doppler echocardiography, the primary diagnostic tool, yields inconclu-
sive results [20]. Despite the growing significance of AV calcium scoring in prac-
tice, the traditional, manual segmentation of AV calcifications [6, 20] continues
to present limitations [22]. One of the main groups of methods addressing the
challenge of automatic AV calcium scoring consists of approaches using aorta
segmentation techniques to find corresponding calcifications. This group can
be divided into atlas-based methods using image registration [11, 12] and region
growth approaches [5]. In one of the early studies [9], a multi-atlas-based method
for quantifying aortic calcifications in low-dose non-contrast chest CT was pro-
posed. The segmentation of the aorta involved registering multiple non-contrast
images with manually segmented aortas (atlases), aligning them with an input
non-contrast scan using the Elastix technique [12], and merging the resulting
masks. In another method [13], the circular cross-sections of the aorta were
automatically identified using the Hough transform on axial slices from a non-
contrast chest CT scan, and the segmentation was refined through a 3D level set
method. Torío et al. [23] proposed a similar method, enhanced by mathematical
morphology techniques. While the methods outlined above exhibit promise and
offer strong explanatory capabilities by leveraging anatomical information about
the aorta for calcification identification, they grapple with suboptimal segmenta-
tion quality of the aortic root, hardly visible in non-contrast CT. Consequently,
the segmentation provides a rough estimate of the AV location, necessitating
ML-based or heuristic post-processing steps to eliminate false positives.

2.2 Contribution

Non-contrast CT imaging offers limited details for accurately delineating the aor-
tic root due to the radiological density of the aorta, coronary vessels, and heart
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Fig. 1. Contrast-enhanced cardiac CT images reveal the clear delineation of the aortic
root and valve (C), juxtaposed against the indistinct outlines in non-contrast images (A
and E). The segmentation masks are shown in red, depicting the transformed segmen-
tation from contrast CT (D), aligned to the non-contrast series in (B) and (F) using
the Iterative Closest Point (ICP) method [2]. The blue masks in (B) and (F) highlight
the aortic root segmentation as predicted by our ML model, which operates exclusively
on non-contrast CT data, demonstrating high accuracy in shape extrapolation.

chambers being discernible only when adjacent to fatty tissue or air. While the
aortic root is partially visible due to surrounding pericardial fat (Fig. 1), the de-
lineation between the aorta and surrounding tissues can vary significantly, with
clear boundaries in some areas and complete blending in others. This study ex-
plores the feasibility and accuracy of developing robust models for segmenting
the aortic root in non-contrast images. We devise a scalable approach for con-
structing ML segmentation models of the aortic root and establish a method for
assessing their accuracy. The final model, requiring only a non-contrast image,
is capable of rendering the aortic root and extrapolating details of the AV with
a mean precision equal to 0.8mm, which is the detection limit for this imaging
modality. Our contributions comprises two key components: firstly, we construct
the aorta model in non-contrast images using registered GT from high-precision
contrast images combined with a subsequent weak supervision process. Secondly,
we introduce an evaluation tool to gauge the precision of AV identification based
on the Iterative Closest Point (ICP) algorithm [2].

The scalability of our method is demonstrated by its ability to be nearly
automated for processing a potentially unlimited dataset without significantly
impeding human tasks. Initially, our process relies on the conventional method
of registration between contrast and non-contrast images. Subsequently, the in-
tervention of a human annotator is necessitated, yet this involvement is confined
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to the straightforward tasks of approving or dismissing the outcomes of the reg-
istration. Typically, this stage demands approximately 1 minute per scan for an
annotator with experience. Furthermore, the technique for evaluation operates
entirely autonomously, eliminating the need for manual intervention.

3 Methods

Figure 2 presents the main steps of the framework introduced in this paper.
Firstly, we perform image-based registration of the contrast and non-contrast
scans, and use an ML model to segment aortic roots. Subsequently, manual eval-
uation is performed to generate GT for training. The approach is concluded by
the segmentation accuracy evaluation. Below, we describe these steps in detail.

Automatic 
image-to-image 

registration

Contrast
CT scans

Non-contrast
CT scans

Model inference on 
registered contrast image

Manual 
evaluation

Ground Truth (GT)

GT generation

nnU-Net

Segmentation model

80% 
training set

20% 
validation set

Non-contrast model inference Non-contrast
model training

Rigid registration of masks from 
contrast and non-contrast CT

ICP-based accuracy evaluation

Distance 
error

Fig. 2. Main steps of the framework for training and evaluation of the aortic root
segmentation neural network based on non-contrast CT scans.

Aortic Root Segmentation in Contrast CT First of all, in order to generate input
masks used in subsequent image registration steps, we segment aortic roots in
contrast-enhanced CT scans. Due to the good visibility of the aorta including
the aortic root in this modality, both manual delineation based on standard pro-
cedures and automatic segmentation using state-of-the-art deep learning models
are possible. In this work, we use a high-resolution ML model trained based on
proprietary in-house data and the standard nnU-Net [8] framework with default
settings, however, any of the openly available deep learning models could be used
here, as well. On an in-house test set consisting of 26 cases, segmented manually
by two medical imaging experts with over three years of experience, the model
yields a mean Dice score of 0.98, which is at the same level as the interrater
variability. A subset of 19 GT segmentations with the corresponding inferences
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of our ML model, for the scans from the open-source orCaScore dataset [25], is
made available online [3].

Aortic Root Segmentation in Non-contrast CT based on Image Registration In
the next step, we perform image registration of 268 contrast CT scans to their
non-contrast counterparts, based on a standard Greedy framework [26, 11] with
default settings. The ML model described in the previous section is used to
segment aortic roots in the contrast scans transformed to the reference frame of
the corresponding non-contrast images.

Semi-Supervised Deep Learning Technique To assure sufficient quality of the
automatic GT generation process, we employ a fast, manual evaluation step by
a medical imaging expert by assessing the agreement of the segmentation with
the non-contrast scan at consecutive axial slices. Since, as mentioned before,
anatomical structures such as the aortic valve are not visible in the non-contrast
scan, the evaluation is based mainly on the ascending aorta and the proximal
parts of coronary arteries. At this stage, only a binary decision is made to reject
samples not meeting the quality criteria. An evaluation by a medical imaging
expert with over four years of experience led to a dataset consisting of 143
pairs of aortic root masks and the corresponding non-contrast CT scans. It
formed a dataset which contained CT scans acquired in two clinical centers from
two European countries and covered a range of scanner manufacturers: GE (7
scans), Philips (4), Siemens (129), and Toshiba (3). It was split into training and
validation subsets containing 114 and 29 scans, respectively. In this study, we did
not perform any kind of data stratification but we have evaluated the final result
against a publicly available orCaScore dataset. The standard nnU-Net framework
[8] was used to train an ML segmentation model. We used the previously selected
29-element validation set only for potential over-fitting monitoring.

Iterative Closest Point (ICP) Method for Accuracy Estimation Qualitative in-
spections of geometries created by the aorta model in non-contrast images sug-
gest that it not only reproduces in detail the aortic root but also extrapolates
the shape and position of the AV. GT is unavailable in this case; however, we
have detailed segmentations of the aortic roots in contrast series. This suggests
comparing the segmentations based on contrast series with ML inferences in non-
contrast images. One might naively use image registration, but, as has been pre-
viously stated, this method might introduce significant errors and is unreliable.
We have, however, observed that the ostia of coronary vessels and surrounding
parts of the aortic root are visible in both contrast and non-contrast images.
This observation suggests using characteristic points as landmarks to obtain a
local transformation from contrast to non-contrast images. Manual marking of
landmarks is feasible but not a scalable solution, so we propose an algorithm
based on Interactive Closest Points (ICP) [2]. We proceed as follows:

1. We take segmentations of coronary vessels and the aortic root in both con-
trast and non-contrast images in the form of surface meshes. The masks
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Fig. 3. The procedure of evaluation of aortic valve accuracy.

of coronary vessels in contrast and non-contrast CT are obtained based on
neural networks trained using the nnU-Net framework [8], according to the
methods described in [16] and [4], respectively.

2. We find the position of the ostia and a direction along the aortic root. It
defines a system of coordinates for further processing.

3. We keep only parts within 55mm from the mean ostia position in both cases.
4. We separate the AV mesh (lower part) and ostia with a fragment of the

aortic root (upper part).
5. We use a modified variant of the ICP algorithm to find a local rigid trans-

formation between the upper part only5.
6. Using the transformation, we move AV only from the contrast to the non-

contrast coordinate system.
7. We compute the distance using vtkImplicitPolyDataDistance from VTK

library [21], for all vertices of AV transformed from contrast image to non-
contrast ML model mesh. For each AV we calculate the mean of these dis-
tances and use it as measure of non-contrast ML model accuracy.

In this work, we assumed that a local rigid transformation is a good ap-
proximation, which is fulfilled if heart images in contrast and non-contrast are
approximately in the same phase—this condition is met for our data. The full
source code for this method is available in a public repository [3].

5 Our variant of ICP acknowledges the subtle anatomical discrepancies between size
of the ROI in contrast and non-contrast segmentations. By iteratively applying the
ICP and excluding points beyond a certain distance, we refined alignment accuracy.
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4 Analysis of Results and Conclusion

Our model demonstrates the capability to generate accurate segmentations of
the aortic root from non-contrast cardiac CT scans. Utilizing the orCaScore
dataset, which comprises 70 pairs of contrast and non-contrast gated CT scans,
we have evaluated our model’s performance. For both contrast and non-contrast
images, segmentations were obtained and subsequently converted into surface
meshes. An ICP-based alignment procedure was employed to align the aortic
root from contrast images to the non-contrast coordinate system. This allowed
us to quantify the distance between the reconstructed aortic valve based on
non-contrast data and the aligned in ICP procedure shape derived from precise
contrast images.

Best, dx=0.315
Median, dx=0.763

Worst, dx=1.599

Fig. 4. The Quantitative Performance Evaluation of the nnU-Net deep learning model
of aortic root over the orCaScore benchmark (challenge) dataset. This histogram il-
lustrates the distribution of absolute mean distance errors in segmenting the aortic
valve with the nnU-Net model. Evaluated on a set of 70 non-contrast CT scans from
the publicly accessible orCaScore challenge dataset, the figure delineates the best (with
dx=0.315mm), median (dx=0.763mm), and worst (dx=1.599mm) segmentation results.
The semi-transparent gray mesh represents the aorta model, while the violet segmen-
tation corresponds to the ICP-fitted ground truth derived from the contrast-enhanced
CT scans. Finally, the histogram quantifies the model’s performance across the orCaS-
core dataset, capturing the variability in segmentation accuracy.

As depicted in Fig. 4, the mean accuracy achieved was 0.82mm ±0.24mm.
Remarkably, even the least accurate case fell within an acceptable error margin
of 1.6mm, underscoring the model’s utility for various clinical applications. It
is noteworthy that the spatial resolution of non-contrast scans is approximately
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1.5mm, which further substantiates the robustness of our results. Of note, the
distribution of the absolute mean distance errors indeed indicate that there is
a small number of outlying low-quality predictions, with the majority of test
orCaScore scans showing high-quality operation of our approach.

Limitations and Challenges In our study, we excluded anomalies such as bicus-
pid prosthetic aortic valves and the presence of coronary artery stents. However,
because our process is inherently data-driven, it is straightforward to include a
significant representation of these cases in both the training and testing datasets.
The methodology we adopted is flexible, allowing for modifications to develop
machine learning models based on non-contrast data when ground truth is avail-
able from corresponding contrast-enhanced series. The future challenge lies in
extending this work to derive clinically relevant information from high-resolution
non-contrast series for patients who cannot receive contrast agents.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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