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Abstract. Diffusion models have been used extensively for high qual-
ity image and video generation tasks. In this paper, we propose a novel
conditional diffusion model with spatial attention and latent embedding
(cDAL) for medical image segmentation. In cDAL, a convolutional neu-
ral network (CNN) based discriminator is used at every time-step of the
diffusion process to distinguish between the generated labels and the real
ones. A spatial attention map is computed based on the features learned
by the discriminator to help cDAL generate more accurate segmentation
of discriminative regions in an input image. Additionally, we incorpo-
rated a random latent embedding into each layer of our model to signif-
icantly reduce the number of training and sampling time-steps, thereby
making it much faster than other diffusion models for image segmenta-
tion. We applied cDAL on 3 publicly available medical image segmenta-
tion datasets (MoNuSeg, Chest X-ray and Hippocampus) and observed
significant qualitative and quantitative improvements with higher Dice
scores and mIoU over the state-of-the-art algorithms. The source code is
publicly available at https://github.com/Hejrati/cDAL/.

Keywords: medical image segmentation · diffusion models · generator
· discriminator · spatial attention · latent embedding.

1 Introduction

Medical image segmentation is a crucial task in clinical practice with applica-
tions including disease diagnosis, radiotherapy and surgical treatment planning
[1][2]. A major challenge in the segmentation process are the manual annota-
tions performed by a trained clinician, which is a time-consuming process that
is not scalable. Hence, automation of the segmentation with deep learning algo-
rithms have been a key area of research for the last several years. The algorithms
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which produced state-of-the-art results for end-to-end 2D and 3D medical image
segmentation task include the U-Net [3] and the 3D U-Net [4], respectively.

Diffusion models are a class of generative models where a neural network
is trained to remove the noise from an image which was produced during the
forward process with a pre-defined noise schedule. This trained neural network
is then used in the sampling process to iteratively remove the Gaussian noise
from an image and eventually generate high quality samples by starting from
pure Gaussian noise [5][6][7]. Diffusion models generate more diverse images than
Generative Adversarial Networks (GANs) and have recently outperformed GANs
for the generation of high resolution images [8][9].

Image segmentation with diffusion models is a challenging task due to the de-
terministic nature of image segmentation as opposed to the stochastic nature of
diffusion models. Hence, diffusion models have been used for supervised medical
image segmentation tasks to model the distribution of labels resulting from in-
dependent annotators of the same image [12][13]. When the segmentation labels
are scarce, the semantic representation from intermediate layers of a pretrained
diffusion model is used to train a simple pixel-level classifier with the small set
of available labels [14]. In [10][11], the image is used as a condition to a diffusion
model during the label generation process, which is repeated a few times due to
the stochastic nature of diffusion models. The mean of all such label generations
is considered as the final segmentation map.

Diffusion models have a common drawback that the sampling procedure to
generate the images from pure Gaussian noise is a time-consuming process. This
problem was addressed with several interesting ideas such as non-markovian
diffusion process [15] and distillation in diffusion models [16][17]. But, faster
sampling typically results in degradation of the generated image quality. Hence,
there was a need to tackle the generative learning trilemma of achieving fast sam-
pling, higher quality and diversified image samples. This trilemma was addressed
with the denoising diffusion GANs [18] by modeling the denoising distribution
with a complex multimodal distribution.

In this work, we propose a novel method of using a conditional diffusion
model with spatial attention and latent embedding (cDAL) for medical image
segmentation. During training, cDAL uses a diffusion model to predict the un-
perturbed segmentation labels from a noisy label. The image is encoded and
passed as a condition to the input of the label diffusion model. During each dif-
fusion time-step, we incorporate a separate discriminator to distinguish between
the ground-truth labels and the generated ones. We use the spatial attention
map learned by the discriminator [20] to compute attention-based labels as the
input of the diffusion model so that it can focus on these discriminative regions
during segmentation. We also incorporate a random latent embedding into each
layer of the diffusion model to reduce the number of diffusion time-steps in both
training and sampling.

Our main contributions are: (i) We incorporated a separate discriminator
for each diffusion time-step and guided the diffusion process with the spatial
attention map learned from the discriminator. (ii) We used a random latent em-
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bedding for each layer of the diffusion model which helped in reducing both the
training and sampling time-steps by modeling the denoising distribution with
a complex multimodal distribution. (iii) We performed extensive experiments
on two 2D binary (MoNuSeg and chest X-ray) and one 3D multi-class (Hip-
pocampus) public medical image segmentation datasets and observed significant
quantitative and qualitative improvements over state-of-the-art methods.

2 Method

In the following sections, we provide a detailed description of each component
of our proposed cDAL architecture as shown in Fig. 1.

 Time Embedding
 Latent Embedding

+

 Time Embedding

Image (I)

Real
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Encoder
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Fig. 1: Our proposed conditional diffusion model with spatial attention and latent
embedding (cDAL) for medical image segmentation.

2.1 Conditional diffusion model for image segmentation

There is inherent ambiguity in medical image segmentation as the delineation
of the same image differs among experts. In our proposed cDAL, we utilized the
stochastic nature of DDPM to approximate this process and generate multiple
predictions during inference. Subsequently, we take the mean of the predictions
and threshold them to obtain more accurate segmentation masks compared to
deterministic models such as U-Net.

DDPM [5] consists of a markov-chain forward process where Gaussian noise
is gradually added to perturb the data distribution in T time-steps. The forward
process q is given by the joint distribution: q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), where

for each step t, the forward process is: q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI).

Here, x0 is sampled from the data distribution, T is the number of time-steps,
βt is the predefined noise schedule, N denotes the Gaussian distribution and I is
a n×n shaped identity matrix of the same shape as the data x0. The cumulative
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process from x0 to xt is represented as: xt =
√
ᾱtx0 + (1− ᾱt)ϵ, ϵ ∼ N (0, In×n).

Here, ᾱt =
∏t

s=1(1−βs) is the cumulative scaling factor used during the forward
process q(xt|x0) = N (xt;

√
ᾱtx0, (1−ᾱt)I) to obtain sample xt at arbitrary time-

step t.
The reverse process of DDPM to iteratively denoise the latent variables

(x1, ..., xT ) is parameterized by the joint distribution pθ(x0:T ) and given by:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) = p(xT )

T∏
t=1

N (xt−1;µθ(xt, t), σ
2
t I) (1)

where, µθ(xt, t), σ2
t and θ denote the mean, variance and parameters of the

denoising model pθ(xt−1|xt) respectively.
By maximizing the evidence lower bound [5], we have the training loss func-

tion: argminθ Ex0,ϵ,t[||ϵ− ϵθ(xt, t)||2], where ϵ ∼ N (0, In×n) denotes pure Gaus-
sian noise and ϵθ denotes the predicted noise by the denoising network. During
the sampling stage, the trained model ϵθ is used to iteratively denoise the data,
i.e. generate xt−1 from xt for t = T, T − 1, ..., 1 and eventually generate the data
x0 by starting from pure Gaussian noise xT ∼ N (0, In×n).

This unconditional generation process of DDPM is suitable for image genera-
tion tasks where the goal is to model a data distribution. For image segmentation
tasks, there exists an image and label pair (I, x), where I denotes the image and
x denotes the corresponding ground-truth label. Hence, for image segmentation
tasks, diffusion models are helpful to generate a distribution of labels but it
needs to have the image as a condition to generate relevant labels.

In cDAL, we use the diffusion model as a generator xθ with the image I as
a condition to guide the diffusion model to generate the label (x) corresponding
to the image I as shown in Fig. 1. In our approach, instead of predicting the
noise with the diffusion model ϵθ, we use the formulation provided by [19] and
directly predict the clean label x̂0 using our diffusion model conditioned on the
image, i.e. x̂0 = xθ(xt, t, I), where t is the time embedding.

2.2 cDAL: spatial attention maps

In the cDAL architecture, we incorporate a distinct CNN-based discriminator
D as shown in Fig. 1. This discriminator is trained to differentiate between the
ground-truth segmentation labels and the labels generated using our diffusion
model xθ(xt, t, I).

More specifically, first the conditional diffusion model is frozen. The per-
turbed label xt−1 is generated using the forward process and ground-truth la-
bels, i.e. xt−1 := q(xt−1|x0). Then, the discriminator D uses xt := q(xt|xt−1),
xt−1 and time-step t as inputs to predict the label as real. The cross-entropy
loss is used to update D. Subsequently, with the diffusion model still frozen, the
output of the diffusion model is: x̂0 = xθ(xt, t, I). With x̂0, x̂t−1 is sampled using
the posterior distribution q(x̂t−1|xt, x̂0). Then, the discriminator uses x̂t−1, xt

and t as inputs to predict the label as fake (class 0), and the cross-entropy loss
is used to update D again.
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Clearly, the discriminator D learns the most discriminative features to differ-
entiate between the real xt−1 and predicted x̂t−1. Here, we use the feature maps
of D to generate the spatial attention map AD = 1

C

∑C
i=1 Fi, where, Fi denotes

the ith feature map of D with C channels.
The attention map AD highlights the spatial regions in the labels which are

essential for our model to generate labels x̂0 that are close to the ground-truth
x0. We upsample the attention map AD to match the shape of ground-truth label
x0 and then perform element-wise multiplication with x0 to get xatt

0 = x0⊙AD,
where ⊙ represents the Hadamard product. Subsequently, the forward process
is used to transform xatt

0 to xatt
t using q(xatt

t |xatt
0 ). The perturbed xatt

t is fed
to the conditional diffusion model to predict x̂0 as depicted in Fig. 1. With
discriminator D fixed, the diffusion model loss is ||x0−xθ(x

att
t , t, I)||2, where, x0

is the ground-truth label, xθ is the denoising model dependent on the attention
incorporated xatt

t . This loss is used to update the parameters θ of the conditional
diffusion model.

2.3 cDAL: Latent embedding

DDPM [5] typically uses a large number of time-steps for both training and
sampling since they use small step-sizes. Hence, the true denoising distribu-
tion is closer to a Gaussian distribution. When the denoising step size becomes
larger, the denoising distribution deviates from a Gaussian and becomes a com-
plex multi-modal distribution [18]. In cDAL, we use larger step sizes to perturb
the label data x0 ∼ q(x0) in T time-steps (T ≤ 4) using the forward process
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) with large variance βt in each time step.

For the reverse process, the denoising model is given by:

pθ(x̂t−1|xt) := q(x̂t−1|xt, x̂0 = xθ(x
att
t , t, I)) (2)

where, x̂0 is first predicted using xθ(x
att
t , t, I) and then from the posterior dis-

tribution q(x̂t−1|xt, x̂0), x̂t−1 is sampled as shown in Fig. 1.
Now, a random latent embedding z ∼ p(z) := N (z; 0, I) is introduced in

cDAL xθ such that x̂0 = xθ(xt, t, z, I). Hence, the denoising model pθ(x̂t−1|xt)
is given by:

pθ(x̂t−1|xt) :=

∫
pθ(x̂0|xt)q(x̂t−1|xt, x̂0)dx̂0 =

∫
p(z)q(x̂t−1|xt, x̂0 = xθ(x

att
t , t, z, I))dz

(3)
where, pθ(x̂0|xt) is the implicit distribution by our conditional diffusion model
generator xθ(x

att
t , t, z, I) that uses a L-dimensional latent variable z. Hence, the

mapping of our conditional diffusion model label generator is xθ(x
att
t , t, z, I).

The predicted label x̂0 is not a deterministic mapping of xt as in DDPM but it
is produced by the denoising model with a random latent variable z. This process
makes the denoising distribution pθ(x̂t−1|xt) multimodal and hence larger step
sizes could be used. The final loss to update xθ (with D frozen) is given by:

||x0 − xθ(x
att
t , t, z, I)||2. (4)
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The training and sampling details of cDAL are given by Algorithms 1 and 2,
respectively, which are described in the supplemental material.

3 Experiments and Results

We performed extensive experiments with our proposed cDAL algorithm on
three public datasets and compared cDAL with several state-of-the-art (SOTA)
segmentation methods, including SegDiff [11], the best diffusion-based image
segmentation model.

3.1 Datasets

MoNuSeg dataset (2D Binary) - This dataset [22], [23] consists of H&E
stained tissue images of patients with tumors of different organs. It contains 30
training and 14 held-out testing color images and corresponding binary labels.
CXR dataset (2D Binary) - The National Library of Medicine in Maryland,
USA created a standard digital chest X-ray dataset. This dataset comprises of
704 grayscale images and binary labels for the lungs, divided into 566 images for
training and 138 images for testing, with a 3-fold cross-validation.
Hippocampus dataset (3D Multi-class) - This dataset [21] is collection of
3D T1-weighted MRI images where each volume was annotated by using 2 labels
for hippocampus and parts of the subiculum. The labels comprised of 3 classes:
background, anterior and posterior and hence a slice by slice one-hot encoding
was used to train and test the model. We divided the dataset into 130 and 65
for training and testing, with a 4-fold cross validation.

3.2 Experimental setup and implementation details

We compared cDAL with several SOTA medical image segmentation models.
These include U-Net [3], U-Net++ [26], MedT [27], Res-UNet [28], MSU-Net [24],
Multi-SegCaps [30], EM-SegCaps [31], 3D-UCaps [29] and SegDiff [11]. We briefly
describe SegDiff below since it is the SOTA diffusion model based algorithm for
image segmentation.
SegDiff [11] - Segdiff is an integration of the advanced image generation ap-
proach of diffusion models for image segmentation tasks. For the diffusion model,
it uses a U-Net architecture with the input image passed as a condition through
an image encoder that consists of several Residual in Residual Dense Blocks
(RRDB) [25]. SegDiff uses 100 diffusion time-steps in its experiments.
Implementation details - For cDAL, the discriminator architecture resembles
the encoder part of the diffusion network, comprising of Residual blocks. Similar
to other diffusion models, we utilized sinusoidal positional embeddings for time-
step t, for both the discriminator and the diffusion model. Since the diffusion
model’s inference is not deterministic, following SegDiff [11], we ran cDAL for
5 instance generations during the inference stage and calculated the mean seg-
mentation map. We used PyTorch and MONAI framework for our experiments
and trained our models on a NVIDIA Quadro RTX 6000 GPU.
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Table 1: Ablation study with the MoNuSeg and chest X-ray (CXR) dataset.
Model MoNuSeg CXR

mIoU (%) Dice (%) Attn. scale mIoU (%) Dice (%) Attn. scale
cDAL w\o Latent 65.95 79.37 32 92.50 96.06 16

cDAL w\o Attention 70.11 82.36 - 93.27 96.48 -
cDAL 70.70 82.77 16 94.00 96.87 16
cDAL 70.96 82.94 32 93.87 96.80 32
cDAL 70.38 82.53 64 93.68 96.70 64

Evaluation metrics - We employed three quantitative evaluation metrics. Fol-
lowing the literature, we used the Dice score and mIoU (mean Intersection over
Union) for the CXR and MoNuSeg datasets [24][11] and used the Dice score,
precision and recall for the Hippocampus dataset [29].

3.3 Ablation study

To assess the impact of each component in our model, we conducted an ablation
study as shown in Table 1.

The incorporation of attention map in cDAL increases the Dice score and
mIoU by up to 0.49% and 0.79%, respectively, on average for both the datasets.
Subsequently, we identified the optimal layer in the discriminator from which we
could extract the attention map. For MoNuSeg, the best layer was 32x32, while
for CXR it was 16x16. One reason for this difference is that the middle layer
attention maps usually contain more information about boundaries and edges
(smaller-sized labels as in MoNuSeg), whereas the attention maps of the later
layers typically focus on entire objects (larger labels as in CXR). Additionally, we
examined the importance of the random latent embedding in our model. Without
the latent embedding, the mIoU and Dice score for cDAL drops significantly with
similar diffusion time-steps as our proposed cDAL, and more number of time-
steps would be necessary to match the performance of cDAL.

3.4 Segmentation using MoNuSeg dataset

Table 2 (left) presents the performance of cDAL and its comparison with several
SOTA segmentation models on the MoNuSeg dataset. On a held-out test set,
cDAL demonstrates a significant improvement over the other models, and an
improvement of 1.96% in mIoU and 1.35% in Dice score over SegDiff, the cur-
rent best diffusion-based segmentation model. It is worth mentioning that the
notable enhancement in performance was achieved using a much lighter condi-
tional image encoder, with 95% less parameters than the SegDiff image encoder.
Additionally, the cDAL was much faster with inference time of 1 second as it used
just 4 time-steps (T=4) for training and sampling, compared to 100 time-steps
(T=100) in SegDiff which takes 60 seconds inference time. Hence, our method is
not computationally expensive as in inference we remove the discriminator and
perform sampling with a much smaller number of steps. A qualitative comparison
is provided in Fig. 2 (top row).
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Table 2: Segmentation results on the MoNuSeg and chest X-ray (CXR) dataset.
For the CXR dataset, the standard deviation across the 3-folds is indicated inside
the parenthesis.

Model MoNuSeg Model CXR
mIoU (%) Dice (%) mIoU (%) Dice (%)

U-Net [3] 65.99 79.43 U-Net [3] 91.91 (± 0.28) 95.75 (± 0.17)
U-Net++ [26] 66.04 79.49 U-Net++ [26] 92.03 (± 0.79) 95.80 (± 0.45)

MedT [27] 66.17 79.55 MSU-Net [24] 92.19 (± 0.61) 95.90 (± 0.35)
Res-UNet [28] 66.07 79.49 - - -
SegDiff [11] 69.00 81.59 SegDiff [11] 92.33 (± 0.69) 95.95 (± 0.40)
cDAL (ours) 70.96 82.94 cDAL (ours) 93.04 (±0.97*) 96.35 (±0.54*)

* indicates that the performance improvement by cDAL is statistically significant based on a t-test.

Fig. 2: Visualization of the Image, ground-truth (GT) and predictions with differ-
ent models for MoNuSeg (top row) and CXR (bottom row) dataset. The detailed
zoomed-in visual comparison is provided in the supplemental material.

3.5 Segmentation using Chest X-ray (CXR) dataset

Table 2 (right) provides a comprehensive comparison between cDAL and other
SOTA methods for segmentation tasks on the Chest X-ray (CXR) dataset. A
3-fold cross validation was performed to compare the performance of all mod-
els. On average, cDAL shows significant improvement in mIoU and Dice score
compared to other models and an increase of 0.71% and 0.40% over SegDiff for
mIoU and Dice, respectively. Again, cDAL is with less parameters and much
faster as it achieved this performance with just 2 time-steps for training and
sampling, compared to 100 in SegDiff. A qualitative comparison is provided in
Fig. 2 (bottom row).

3.6 Segmentation using Hippocampus dataset

Table 3 compares cDAL with other SOTA methods for segmentation tasks on the
Hippocampus dataset. A 4-fold cross validation was performed to compare the
performance of all models. On average, cDAL shows significant improvement in
precision, recall and Dice score compared to other models. Compared to SegDiff,
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Table 3: Segmentation results for the Hippocampus dataset with the standard
deviation across the 4-folds indicated inside the parenthesis.

Model Precision (%) Recall (%) Dice (%)
Anterior Posterior Anterior Posterior Anterior Posterior

Multi-SegCaps [30] 65.65 60.49 80.76 84.46 72.42 70.49
EM-SegCaps [31] 20.01 34.55 17.51 19.00 18.67 24.52
3D-UCaps [29] 87.79 (± 0.50) 85.79 (± 1.88) 84.10 (± 1.80) 82.17 (± 1.76) 85.73 (± 1.02) 83.77 (± 0.55)

SegDiff [11] 88.51 (± 0.94) 86.42 (± 0.67) 87.74 (± 1.53) 86.36 (± 1.18) 87.80 (± 0.24) 86.38 (± 0.22)
cDAL (ours) 88.76 (± 1.15) 87.43 (± 1.50) 87.85 (± 0.79) 86.72 (± 1.25) 88.13 (±0.18*) 86.90 (±0.13*)

* indicates that the performance improvement by cDAL is statistically significant based on a t-test.

an average improvement of 0.64%, 0.24% and 0.43% in precision, recall and Dice
score was observed, with just 2 time-steps (T=2) for training and sampling. The
visualization of the predictions is provided in the supplemental material. One
limitation of our model is that it can only be applied on a 2D slice and in the
future we will have a 3D version of our model.

4 Conclusion

In this paper, we proposed cDAL, a novel conditional diffusion model for medical
image segmentation. cDAL incorporates the spatial attention from the discrim-
inator to guide the label generation process. It also includes the random latent
embedding which helped significantly reduce the number of time-steps during
training and sampling. cDAL demonstrated superior results on benchmarking
medical image segmentation datasets.
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