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Abstract. Data scarcity and privacy concerns limit the availability of
high-quality medical images for public use, which can be mitigated through
medical image synthesis. However, current medical image synthesis meth-
ods often struggle to accurately capture the complexity of detailed anatom-
ical structures and pathological conditions. To address these challenges,
we propose a novel medical image synthesis model that leverages fine-
grained image-text alignment and anatomy-pathology prompts to gener-
ate highly detailed and accurate synthetic medical images. Our method
integrates advanced natural language processing techniques with image
generative modeling, enabling precise alignment between descriptive text
prompts and the synthesized images’ anatomical and pathological details.
The proposed approach consists of two key components: an anatomy-
pathology prompting module and a fine-grained alignment-based syn-
thesis module. The anatomy-pathology prompting module automatically
generates descriptive prompts for high-quality medical images. To fur-
ther synthesize high-quality medical images from the generated prompts,
the fine-grained alignment-based synthesis module pre-defines a visual
codebook for the radiology dataset and performs fine-grained alignment
between the codebook and generated prompts to obtain key patches as
visual clues, facilitating accurate image synthesis. We validate the supe-
riority of our method through experiments on public chest X-ray datasets
and demonstrate that our synthetic images preserve accurate semantic
information, making them valuable for various medical applications.

1 Introduction

In the medical field, high-quality medical images are scarce and difficult to access
due to data privacy concerns and the labor-intensive process of collecting such
data [10]. This scarcity of medical images can hinder the development and train-
ing of artificial intelligence (AI) models for various medical applications, such
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as diagnosis [26], segmentation [19,21,25,7,6,14,20], report generation [3], image
synthesis [5,8,4], detection [27], and abnormality classification. One solution to
overcome this challenge is to use medical image synthesis techniques to generate
synthetic data that can replace or supplement real medical images.

Several chest X-ray generation methods have been investigated to mitigate
these issues, which can be categorized into three main groups: generative adver-
sarial networks (GAN) based [22,28,16], diffusion based [2,1], and transformer
based [17,18] methods. Madani et al. [22] and Zhang et al. [28] utilize uncondi-
tional GANs to synthesize medical images as a form of data augmentation to
improve segmentation and abnormality classification performance. To leverage
medical reports, some diffusion-based methods [2,1] take the impression section
of medical reports and random Gaussian noise as input for chest X-ray gen-
eration, ignoring the finding section that includes more detailed descriptions.
To consider more details in medical reports, several transformer-based meth-
ods [17,18] take both finding and impression sections of medical reports as input
to synthesize chest X-rays. However, current methods generate medical images
based on the given ground-truth report from the dataset, which may not fully
describe all the details of the medical image. In fact, medical images contain
different anatomical structures (lobe, heart, and mediastinal) and pathological
conditions (opacity, effusion, and consolidation), which are important for clinical
diagnosis. As a result, the generated medical images often lack this detailed in-
formation. Thus, there is a need for a medical image synthesis method that can
generate high-quality medical images with detailed anatomical and pathological
descriptions.

Another significant challenge for current medical image synthesis methods is
the substantial inter-modal gap between medical images and reports. Medical
images, comprising thousands of pixels, visualize rich textures and colors, while
medical reports consist of only a few sentences to summarize the findings and
impressions of the medical images. This disparity leads to a great imbalance
in the amount of information contained in each modality, resulting in a large
inter-modal gap between medical reports and images [12]. As a result, the gen-
erated medical images may not accurately reflect the content of the correspond-
ing medical reports, as the synthesis models struggle to bridge this information
gap. Furthermore, the limited information provided in the medical reports may
not be sufficient to guide the synthesis of highly detailed and accurate medical
images, which are crucial for clinical diagnosis and decision-making. Thus, it is
necessary to develop techniques that can effectively mitigate the information im-
balance and minimize the inter-modal gap between medical reports and images.
By doing so, the synthesized medical images can better capture the detailed
anatomical structures and pathological conditions described in the medical re-
ports, leading to more reliable and informative synthetic data for various medical
applications.

To address these issues, we propose a novel medical image synthesis model
that leverages the capabilities of fine-grained image-text alignment and anatomy-
pathology prompts to generate highly detailed and accurate synthetic medical
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Fig. 1. The overview of the proposed method. It consists of an anatomy-pathology
prompting module to generate descriptive reports with given anatomy and pathology
words, and a fine-grained alignment based synthesis module using fine-grained image-
text alignment to facilitate image generation.

images. Our approach consists of two key components: an anatomy-pathology
prompting and a fine-grained alignment based synthesis module. The
anatomy-pathology prompting aims to automatically generate descriptive
reports for high-quality medical images. It first constructs the anatomy and
pathology vocabularies from radiology reports under the guidance of radiolo-
gists, and then employs GPT-4 to write reports based on the given vocabularies.
This ensures that the generated reports contain comprehensive and accurate de-
scriptions of the anatomical structures and pathological conditions present in
the medical images. To further synthesize high-quality medical images from the
generated reports, we introduce a fine-grained alignment based synthesis
module. This module pre-defines a visual codebook containing multiple patches
commonly observed in the radiology dataset and performs fine-grained alignment
between the generated reports and the visual codebook. Through this alignment,
the module extracts the most matched keypatches that provide visual clues for
the large language model (LLM) during the synthesis process. The LLM takes
the generated reports, keypatches, and instructions as input and outputs visual
tokens, which are then decoded by a VQ-GAN decoder to produce the final syn-
thetic medical images. We conduct extensive experiments on publicly available
chest X-ray (CXR) datasets to validate the superiority of our method compared
to existing approaches. Furthermore, we perform semantic analysis on both real
and synthetic images to demonstrate that our synthetic images preserve accurate
semantic information, including anatomical structures and pathological condi-
tions, making them valuable for various medical applications.
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2 Method

2.1 Anatomy-Pathology Prompting

Since current methods struggle to synthesize medical images with complex anatom-
ical structures (lobe, heart, and mediastinal) and pathological conditions (opac-
ity, effusion, and consolidation), we introduce an anatomy-pathology prompting
to automatically generate descriptive reports for high-quality medical image gen-
eration. This prompting module contains two main steps, including the design
of anatomy and pathology vocabularies and prompts generation.
Designing Anatomy and Pathology Vocabularies. As illustrated in Fig. 1,
we have developed anatomy and pathology vocabularies to extract instance-level
anatomical and pathological terms from radiological reports and images. Recog-
nizing that anatomical and pathological terms are typically nouns and adjectives,
we employ a word filter to extract all nouns and adjectives from the impression
and findings sections of reports in the MIMIC-CXR dataset [15]. We then select
the top-K nouns and adjectives based on their occurrence frequencies. Finally,
under expert guidance, we manually remove any remaining non-medical nouns
and adjectives that GPT-4 is unable to filter out, and categorize the screened
words into anatomy and pathology vocabularies according to their medical at-
tributes. The number of words in anatomy and pathology vocabularies is 75
and 44, respectively. We demonstrate the word frequency of the anatomy and
pathology vocabularies, as shown in Fig. 2.
Prompts Generation. With the anatomy and pathology vocabularies, we em-
ploy GPT4 to automatically generate the medical reports. Specifically, we first
provide the vocabularies to GPT4 and require it to randomly select N and M
words from anatomy and pathology vocabularies, respectively, which can be com-
bined as the findings. Then, these words are passed to GPT4 to write a report
with reasonable findings for a chest X-ray image. To let GPT4 write reports as
our requirement, we use the following instructions.

anatomy_list = [‘pleural’, ‘lung’, ......,‘neck’, ‘junction’]
pathology_list = [‘effusion’, ‘pneumothorax’, ......, ‘diffuse’, ‘streaky’]
Here are two lists of anatomy and pathology for chest X-rays. Please write some findings
that only include 2 words from the anatomy list and 2 from the pathology list, and
do not write any negative sentences in the findings. These four words can be randomly
selected from the two lists, respectively. Please ensure the findings are reasonable for
a chest x-ray in real medical scenarios. The output should be in 50 words. Here is an
example:
anatomy_list = [‘heart’, ‘diaphragm’]
pathology_list = [‘effusion’, ‘opacity’]
Findings: Presence of opacity observed near the heart and diaphragm regions suggestive
of effusion.
Please generate the output in the following format:
anatomy_list = [‘word1’, ‘word2’]
pathology_list = [‘word3’, ‘word4’]
Findings:

This instruction example requires GPT4 to use two words from anatomy
and pathology vocabularies, respectively. Actually, we can use more than two
words and set N and M for the number of words we used in anatomy and
pathology vocabularies, respectively. Then, we collect the anatomy-pathology
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Fig. 2. The word frequency of the anatomy and pathology vocabularies.

prompts generated by GPT4, where each prompt contains an anatomy word
list (e.g. [‘heart’, ‘diaphragm’]), a pathology word list (e.g. [‘effusion’,
‘opacity’]), and a generated report (e.g. Presence of opacity observed
near the heart and diaphragm regions suggestive of effusion.). With
these generated anatomy-pathology prompts, we can provide the synthesis model
descriptive reports with detailed anatomical structures and pathological condi-
tions.

2.2 Fine-Grained Alignment based Synthesis Module

Since there is an information imbalance and the inter-modal gap between medical
reports and images, we devise a fine-grained alignment based synthesis module
to leverage the fine-grained image-text alignment to facilitate image generation.
The fine-grained alignment between medical reports and visual codebook to ob-
tain matched keypatches as a clue for image synthesis. This module includes
three steps for medical image synthesis, i.e. visual codebook construction, key-
patches extraction, and image synthesis.
Visual Codebook Construction. To construct a visual codebook, we first
identify the most common patches in the training set images and designate
them as keypatches. This process involves matching patches from CXR images
with textual tokens from their corresponding medical reports. We select the
top κ1 CXR-report pairs that exhibit the highest report-to-CXR similarities,
denoted as sT . For each selected CXR-report pair, we calculate the maximum
similarity between each textual token and the image patches, resulting in word-
patch maximum similarity scores. The embeddings of textual tokens and image
patches are extracted by the pre-trained text and encoders [3], respectively.
These scores are then ranked, and the patches corresponding to the top κ2

similarities are extracted and included in the visual codebook as keypatches.
Each keypatch in the codebook consists of the patch itself and its associated
features.
Keypatches Extraction. With the visual codebook, we establish a correspon-
dence between the features of keypatches and the textual tokens of the generated
report. This is achieved by matching the features of each keypatch in the visual
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codebook with the textual tokens, resulting in the creation of a word-patch simi-
larity matrix, denoted as sW ∈ R(κ1×κ2)×K , where K represents the total number
of textual tokens in the report. To identify the keypatches that are most relevant
to the generated report, we perform a ranking operation on the word-patch simi-
larity matrix along the dimension of keypatches. For each textual token, we select
the top κ3 keypatches with the highest word-patch similarity scores. Finally, we
extract the features of these selected keypatches, denoted as kI , which serve as
a compact representation of the visual information most closely associated with
the textual content of the generated report.
Image Synthesis. After acquiring the keypatches, we employ a frozen VQ-
GAN encoder [11] E to transform the matched keypatches kI into image tokens
E(kI). These image tokens are then fed into a pre-trained large language model
(LLM)[3] along with the instruction and the generated report. The input to the
LLM follows an instruction-following format. By providing the LLM with the
instruction, generated report, and image tokens of the keypatches, we enable
the model to predict image tokens that correspond to the desired CXR image.
Finally, the predicted image tokens are decoded using the VQ-GAN decoder,
resulting in the generation of the CXR image xI′

. This process leverages the
power of the pre-trained LLM to interpret the textual instruction and report,
while utilizing the visual information encoded in the keypatches to guide the
generation of a realistic and coherent CXR image.

By adopting the fine-grained alignment based synthesis module, we can gen-
erate high-quality medical images with the detailed anatomical structures and
pathological conditions described in the medical reports.

3 Experiments and Results

3.1 Experiment Setting

Datasets. In our experiments, we utilize two widely used publicly available chest
X-ray datasets: MIMIC-CXR [15] and OpenI [9]. The MIMIC-CXR dataset is
a large-scale dataset consisting of 473,057 images and 206,563 corresponding
medical reports from 63,478 patients. We adhere to the official dataset splits,
which allocate 368,960 samples for training, 2,991 for validation, and 5,159 for
testing. On the other hand, the OpenI dataset is smaller in size, containing 3,684
report-image pairs. The dataset is divided into 2,912 samples for training and
772 for testing.
Implementation and Metrics. We use the pre-trained image encoder, text
encoder and LLM [3] in the fine-grained alignment synthesis module. The pre-
trained VQ-GAN model [11] is adopted to encode image patches to image to-
kens, and decode the image tokens to images. All the models are frozen in the
framework. To assess the image quality, we use the Fréchet inception distance
(FID) [13] and Natural Image Quality Evaluator (NIQE) [23]. The lower values
indicate the better performance.
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Table 1. Comparison of report-to-CXR generation performance on the MIMIC-CXR
and the OpenI datasets.

MIMIC-CXR OpenI
Methods FID ↓ NIQE ↓ FID ↓ NIQE ↓

Stable diffusion [24] 14.5194 5.7455 11.3305 5.7455
Chambon et al. [2] 12.7408 4.4534 8.2887 4.4534

RoentGen [1] 13.1979 5.1286 6.5666 5.1286
UniXGen [17] 14.0569 6.2759 7.5210 6.2759
LLM-CXR [18] 11.9873 4.5876 5.9869 4.5876

Ours 8.8213 4.1138 5.7455 4.1138

Ours LLM-CXR Chambon et al. Stable DiffusionUniXGenReports
Anatomy: lung, 
aorta

Pathology: 
atelectasis, opacity 
consolidation

Lung atelectasis 
with consolidation 
and opacity near 
the aorta

Anatomy: pleural, 
vascular

Pathology: 
effusion, 
congestion 
cardiomegaly

Vascular congestion 
with pleural 
effusion, suggestive 
of cardiomegaly

Ana. & Path.

Fig. 3. The generated chest X-ray images of the MIMIC-CXR dataset with highlighted
regions.

3.2 Comparison with State-of-the-Arts

We conducted a quantitative comparison of our method with state-of-the-art
text-to-image generation methods, such as Stable Diffusion [24], and report-
to-CXR generation approaches, including Chambon et al. [2], RoentGen [1],
UniXGen [17], and LLM-CXR [18]. As shown in Table 1, our method achieves the
highest FID scores on both datasets, demonstrating its superior performance in
generating CXR images with descriptive reports. To further investigate the high-
level feature distribution of the generated CXR images, we randomly selected
1,000 cases from the test set and performed t-SNE visualization on both real
and synthetic CXR images from the MIMIC-CXR dataset. Fig. 4 illustrates that
while the synthetic CXR images generated by current methods exhibit notable
differences from the real ones, our method produces images that nearly overlap
with the real images in the t-SNE visualization, highlighting its exceptional
ability to generate highly realistic CXR images.

Fig. 3 presents a comparison of CXR images generated by our method and
existing approaches on both the MIMIC-CXR and OpenI datasets. In the first
example, our proposed method successfully synthesizes the ’opacity near the
aorta’ described in the input report, while other methods struggle to generate
this specific feature. This observation highlights the superior capability of our
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(a) Stable Diffusion (b) RoentGen (d) Ours(c) UniXGen

Real Synthetic

Fig. 4. The t-SNE visualization of the real and synthetic CXR images on the MIMIC-
CXR dataset.

Table 2. Anatomy and pathology classification performance (%) comparison of
MIMIC-CXR dataset and CXR images generated by our method.

Anatomy Pathology Overall
Data source Accuracy AUC Accuracy AUC Accuracy AUC
MIMIC-CXR 91.21 78.17 92.19 74.42 91.59 76.74

Ours 94.74 83.88 92.11 77.02 93.74 81.27

method in producing highly realistic and accurate CXR images that faithfully
reflect the content of the corresponding reports.

3.3 Semantic Analysis

To further analyze the semantic information of the synthetic images, we pre-
train a classifier on the MIMIC-CXR dataset for the multi-label anatomy and
pathology classification. Then, we test the classification performance of the real
and synthetic images. In Table 2, we show the classification performance for the
test set of the MIMIC-CXR dataset and CXR images generated by our method.
Our method significantly outperforms the real data by a large margin with an
accuracy of 2.15%, implying our synthetic data with accurate semantic informa-
tion about anatomical structures and pathological conditions. Moreover, we also
show the performance of each category for anatomy and pathology classification.
As visualized in Fig. 5, our method achieves higher precision than the real data
in most categories. These indicate the medical images generated by our method
preserve more semantic information in terms of anatomy and pathology.
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Fig. 5. Anatomy and pathology classification performance of each category. Each col-
umn shows the precision score.

4 Conclusion

To synthesize high-quality medical images with detailed anatomical and pathol-
ogy information, we introduce a medical image synthesis model to generate
anatomy-pathology prompts and highly detailed medical images. In order to
provide the descriptive reports with anatomy and pathology information, we
design an anatomy-pathology prompting to establish anatomy and pathology
vocabularies and employ GPT4 to automatically generate reports. With the de-
scriptive reports, we devise a fine-grained alignment based synthesis module to
perform alignment between the reports and pre-defined visual codebook to ob-
tain matched keypatches. Moreover, this module utilizes the LLM and VQ-GAN
to convert reports, instructions, and matched keypatches to synthetic images.
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