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Abstract. Late gadolinium enhancement (LGE) imaging is considered the gold-
standard technique for evaluating myocardial scar/fibrosis. In LGE, an inversion 
pulse is played before imaging to create a contrast between healthy and scarred 
regions. However, several factors can impact the contrast quality, impacting 
diagnostic interpretation. Furthermore, the quantification of scar burden is highly 
dependent on image quality. Deep learning-based automated segmentation 
algorithms often fail when there is no clear boundary between healthy and scarred 
tissue. This study sought to develop a generative model for improving the 
contrast of healthy-scarred myocardium in LGE. We propose a localized 
conditional diffusion model, in which only a region-of-interest (ROI), in this case 
heart, is subjected to the noising process, adapting the learning process to the 
local nature of our proposed enhancement. The scar-enhanced images, used as 
training targets, are generated via tissue-specific gamma correction. A 
segmentation model is trained and used to extract the heart regions. The inference 
speed is improved by leveraging partial diffusion, applying noise only up to an 
intermediate step. Furthermore, utilizing the stochastic nature of diffusion 
models, repeated inference leads to improved scar enhancement of ambiguous 
regions. The proposed algorithm was evaluated using LGE images collected in 
929 patients with hypertrophic cardiomyopathy, in a multi-center, multi-vendor 
study. Our results show visual improvements of scar-healthy myocardium 
contrast. To further demonstrate the strength of our method, we evaluate our 
performance against various image enhancement models where the proposed 
approach shows higher contrast enhancement. The code is available at: 
https://github.com/HMS-CardiacMR/Scar_enhancement.  
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1 Introduction 

Late gadolinium enhancement (LGE) cardiac MR (CMR) is the gold standard for 
evaluating myocardial scar. Using an inversion-recovery sequence, LGE images are 
acquired 10-15 minutes after administering gadolinium-based contrast. The delay 
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between inversion time and imaging is selected to null the healthy myocardium. This 
results in LGE images in which the scar appears bright on a dark healthy myocardium 
background. However, improper nulling of the myocardium [1], contrast dose/type [2], 
and time between contrast infusion and imaging [3] can result in suboptimal contrast 
between the scar and the healthy myocardium. Different imaging sequences and 
sampling schemes (e.g. Cartesian, radial, and spiral sequences) also impact the LGE 
contrast. These factors could reduce the contrast, impacting diagnostic image quality 
and interpretation. Furthermore, the quantification of scar burden is highly dependent 
on image contrast. Deep learning-based automated segmentation algorithms often fail 
when there is insufficient contrast between healthy and scarred tissue. Low image 
contrast is particularly important in the setting of non-ischemic cardiomyopathies 
where the scar/fibrosis is often more heterogeneous and with unclear boundaries. 

Over the past two decades, significant advances have been made to improve LGE 
diagnostic image quality. This includes introducing phase-sensitive inversion recovery 
[4], more efficient acquisition sampling [5], dark-blood LGE [6], and 3D high-
resolution imaging [7]. There have also been advances in analysis focusing on 
automating scar segmentation. With advances in deep learning models, there have been 
several recent advances in automating scar segmentation [8,9,10]. However, to our 
knowledge, no work has been performed to improve scar-healthy myocardium contrast 
after data acquisition. Therefore, this work sought to enhance the contrast between the 
scar and healthy myocardium in LGE images by developing a diffusion model to 
enhance the scarred region without impacting the healthy myocardium. The contrast 
enhancement aims to simplify image interpretation, helping to resolve ambiguities 
regarding the presence and extent of the scar tissue. 

We introduce a generative AI framework for image-based contrast enhancement, 
leveraging regional diffusion models to improve scar contrast in LGE. We propose a 
conditional localized diffusion model where noise is applied to a predefined region-of-
interest (ROI) containing the heart, rather than the whole image. We accelerate the 
inference speed of our model by exploring the idea of partial diffusion, starting the 
reverse diffusion pass from only a partially noised image. Lastly, leveraging the 
stochastic nature of diffusion models and adapting to the varying contrasts of the 
original images, we define our final enhancement as a mean of images generated by 
repeating the diffusion process multiple times. Thus, the enhancement level is related 
to the model’s certainty that a scar is present in the given region, improving the 
enhancement of ambiguous regions.  

2 Methodology 

This section discusses each step of the proposed framework in detail, with each block 
of the method presented in Fig. 1. 
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Fig. 1. Diagram representing all steps of our method. In the training process, we first generate 
the training data 𝑦 using tissue-specific gamma correction, aided by the ground truth tissue labels. 
Next, a binary segmentation model 𝑓𝑤 is trained to extract the heart region, used as the ROI. The 
segmentation together with the scar-enhanced images are used for the training of the diffusion 
model 𝜖𝜃. At inference, we use the trained segmentation model 𝑓𝑤 for the ROI acquisition, which 
is then used for the enhancement generation using a partial diffusion scheme. 

2.1 Target Data Preparation 

 As a first step of the framework, we generate scar-enhanced images via tissue-
specific gamma correction. These images serve as targets for training purposes. First, 
the intensities of each image are scaled to a range of [0, 255]. For each pixel 𝐼 in the 
original image 𝑥, gamma correction is applied using 𝐼𝑒 = 𝐼1/γ, where 𝐼𝑒 represents the 
enhanced pixel and 𝛾 is the gamma correction value. Gamma values above 1 increase 
the contrast of the region, while values below 1 decrease it. Segmentation masks of the 
scar (𝑚𝑎𝑠𝑘𝑠𝑐𝑎𝑟), healthy myocardium (𝑚𝑎𝑠𝑘𝑚𝑦𝑜), and blood pool (𝑚𝑎𝑠𝑘𝑏𝑙𝑜𝑜𝑑) are 
necessary to generate the scar enhanced target data. Masks provided with the dataset 
are utilized for this step. The image regions annotated as scars undergo the gamma 
correction using 𝛾 > 1, increasing the brightness of the scar. The strength of 𝛾 applied 
to the scar depends on the original contrast between the scar and the blood pool, 
ensuring that brightened scars are of different intensity than the blood pool. 
Additionally, blood pools with mean brightness above average are subjected to 𝛾 < 1. 
The average is calculated from the mean intensities of all the blood pools in the dataset. 
We denote the scar-enhanced images as 𝒚. The selection of the gamma correction 
values was subjective to achieve a realistic looking LGE with improved scar 
visualization.  
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2.2 Localized Diffusion 

Heart Segmentation. While diffusion models generally operate by gradually adding 
noise to the whole image, our task focuses on heart regions. To ensure the remaining 
regions of the image stay intact and the model’s focus is defined on the area of the scar, 
we introduce localized diffusion. The ROI is defined as a binary mask 𝑚 =
𝑚𝑎𝑠𝑘𝑠𝑐𝑎𝑟 + 𝑚𝑎𝑠𝑘𝑏𝑙𝑜𝑜𝑑 + 𝑚𝑎𝑠𝑘𝑚𝑦𝑜, denoting the heart. A U-Net model 𝑓𝑤 [11] is 
trained using the original images and their corresponding binary labels. The ROI masks, 
used for both training and inference, are obtained using the trained model as 𝑚̂ =
𝑓𝑤(𝑥). The results of heart segmentation are available in Supp. Mat. Table 1.  

Diffusion Process. We follow the process of the denoising diffusion probabilistic 
models (DDPM) [12]. DDPM is fixed to a T-step Markov chain, converting the data 
distribution 𝑞(𝑥0) into normal distribution 𝑞(𝑥𝑇) through a series of gradually added 
noise 𝜖 under a variance schedule 𝛽𝑡 ∈ (0,1), 𝑡 = 1, … , 𝑇, where 𝑥0 is the original 
image and 𝑥𝑇 is a fully noised image. In this work, the DDPM process is modified by 
restricting the application of noise to ROI only rather than the entire image. Thus, we 
alter the forward process by introducing 𝑚̂ as a noise generation constraint, i.e., 

 𝑞(𝑥𝑡|𝑥𝑡−1) ∶= 𝒩(𝑥𝑡; √1 − 𝐵𝑡𝑥𝑡−1, β𝑡𝒎̂). (1) 

As defined by Ho et al. [6], the noisy image 𝑥𝑇  can be acquired in a single step, using: 

 𝑞(𝑥𝑡|𝑥0) ∶= 𝒩 (𝑥𝑡; √α𝑡𝑥0, (1 − α𝑡)𝒎̂), (2) 

where α𝑡 ∶= 1 − β𝑡 and α𝑡 ∶= ∏ α𝑠
𝑡
𝑠=1 . The formula can be further parameterized into 

 𝑥𝑡 = √α𝑡𝑥0 + √1 − α𝑡𝒎̂ϵ, ϵ ∼ 𝒩(0, 𝐼). (3) 

DDPM approximates the reverse diffusion process via a Gaussian transition, 
conditioned on 𝑥0, and parameterized by θ following 

 𝑝θ(𝑥𝑡−1|𝑥𝑡 , 𝑥0) ∶= 𝒩(𝑥𝑡−1; μθ(𝑥𝑡 , 𝑥0, 𝑡), Σθ(𝑥𝑡 , 𝑥0, 𝑡)), (4) 

where Σθ(𝑥𝑡 , 𝑥0, 𝑡) is a fixed set of scalar covariances and μθ(𝑥𝑡 , 𝑥0, 𝑡) is a learned 
posterior mean. A noise predictor network ϵθ(𝑥𝑡 , 𝑥0, 𝑡) is employed to predict the noise 
added to the data at step 𝑡. The model is trained using the scar-enhanced images, with 
the corresponding original images used for conditioning. The loss function of the 
denoising network 𝜖𝜃 is calculated solely on the ROI and is defined as:  

 ℒ = 𝐸𝑡,ϵ,𝑥|(ϵθ(𝑦𝑡 , 𝑥0, 𝑡) − ϵ)𝑚̂|2. (5) 

2.3 Inference 

Partial Diffusion. Diffusion models suffer from a slow inference speed due to a high 
number of diffusion steps. Partial diffusion is a recent improvement on that issue. 
AnoDDPM [13] explored partial diffusion for the removal of large abnormalities in 
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brain MR, while PartDiff [14] used partial diffusion on a task of the super resolution, 
observing that the latent variables of high and low-resolution images are similar to each 
other. Given the nature of our task, the structural information of the image is expected 
to be preserved. Thus, it is unnecessary to remove the structural information of the 
image by performing the entire forward and reverse pass up to step 𝑇. We employ a 
partial diffusion inference scheme, where the input image 𝑥0 is noised to an 
intermediate step λ, where 1 ≤ λ ≤ 𝑇. We define 𝑥λ as the starting point of the reverse 
diffusion process, i.e., 𝑥0 → 𝑥λ → 𝑦̂0. With partial diffusion, the number of sampling 
steps at inference is reduced, improving the speed of the framework. Through 
empirically tuning the λ value on the validation split, we set λ = 250, unless specified 
otherwise.  

Mean Enhancement. Following the stochastic nature of diffusion models and 
ambiguities of scar borders, the framework proposes repeating the forward and reverse 
diffusion process k-times. The parameter θ remains the same at each repetition, while 
the noise initialization changes. Each of the generated k images is used to generate the 
final enhanced image 

 𝑦̂𝑚 =
∑ 𝑦̂𝑘

𝑖=0 0

𝑖

𝑘
, (6) 

improving the enhancement of ambiguous regions. Through empirical tuning, we set 
k=5 for our experiments. 

3 Experiments 

3.1 Dataset 

LGE CMR images from 929 patients with hypertrophic cardiomyopathy (62% male, 
46±17 years) [15] were used for the training and evaluation of our framework. 
Participants of the study signed consent statements approved by the Institutional 
Review Board (IRB) of the participating centers, permitting the use of their medical 
information for research purposes. The data was split into training (n=630, 386 with 
scar), validation (n=111, 65 with scar), and testing (n=188, 117 with scar) sets. This 
dataset is part of a multicenter and multivendor study (GE, Philips, Siemens) at two 
field strengths (1.5, 3T). Masks delineating the regions of the scar, healthy 
myocardium, and blood pool were manually drawn for each subject. The images are 
centered on the left ventricle and padded to a uniform size of 256x256. 

3.2 Implementation 

All experiments are implemented in PyTorch and performed on a single NVIDIA Tesla 
V100 SXM2 32GB GPU. Diffusion models are trained using a batch size of 16 for 200 
epochs. Adam optimizer with a learning rate of 10-4 is used and T is set to 1000. We 
adopt the denoising U-Net architecture of SR3 [16]. A linear variance schedule is used. 
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For heart segmentation, we use the U-Net architecture available through the MONAI 
framework [11] with a sigmoid added on the last layer. The model is trained using the 
ADAM optimizer with a learning rate of 10-3, batch size of 64 for 100 epochs. The 
epoch with the best validation performance under the Dice metric is used for the 
generation of the heart masks. 

 
Fig. 2. The left side of the figure shows changes in the CNR along different λ values for two 
patients with varying scar burden, i.e., 12% for patient 1 and 3% for patient 2. Visual results for 
patient 1 are shown on the right side of the figure.  

3.3 Evaluation Metrics 

The results are evaluated based on two criteria, 1) preservation of the structural 
information, and 2) the contrast improvement. To assess structure preservation, we 
utilize the Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and 
Learned Perceptual Image Patch Similarity (LPIPS). Due to the focus of the work on 
the heart, we crop the images to a size of 16x16 or larger, based on the borders of their 
ground truth ROIs, and calculate the metrics using these cropped images. The 
comparison is made between scar-enhanced images and the output images generated 
by the models.  To evaluate contrast enhancement, we calculate the relative contrast-
to-noise ratio (CNR) between the scar and the healthy myocardium (myo), as well as 
between the scar and the blood pool, using the following formula: 
𝐶𝑁𝑅(𝑡𝑖𝑠𝑠𝑢𝑒1, 𝑡𝑖𝑠𝑠𝑢𝑒2) = |𝑚𝑒𝑎𝑛(𝑡𝑖𝑠𝑠𝑢𝑒1) − 𝑚𝑒𝑎𝑛(𝑡𝑖𝑠𝑠𝑢𝑒2)|/𝑠𝑡𝑑(𝑡𝑖𝑠𝑠𝑢𝑒2). 

3.4 Partial Diffusion 

We perform a comprehensive analysis of the partial diffusion scheme. Fig. 2 represents 
the changes in the CNR between the scar and healthy myocardium along 𝜆 values from 
1 to 800. The two patient cases selected for the analysis represent varying scar burden, 
with scar volumes of 12% and 3% for patients 1 and 2 respectively. The scar volume 
represents the percentage of the scar tissue in the whole myocardium. The values of the 
CNR increase between 𝜆 value of 1 to 200, after which they stagnate and remain at a 
similar level. The visual results follow that pattern. This suggests that performing a full 
T-step diffusion does not benefit the contrast enhancement while adding onto inference 
time. The optimal 𝜆 values vary between the two patients. However, while picking a 
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small 𝜆 can hurt the performance of the enhancement mechanism, a larger value ensures 
better performance while increasing the inference time. Through a grid search (Supp. 
Mat. Table 2), we found 𝜆 = 250 to be an empirically optimal value for our dataset.  

3.5 Performance Comparison 

 
Fig. 3. Visual comparison of our framework against other methods. The red boxes highlight the 
areas where scars are located. 

 
Fig. 4.   A zoomed-in representation of the changes introduced by our framework. 

Table 1. Quantitative results of our framework against other image enhancement methods. 

Model SSIM%↑ PSNR↑ LPIPS↓ CNR(scar,myo)↑ CNR(scar,blood)↑ 
CNN [11] 90.41±8.06 28.76 ±4.48 0.10±0.07 3.80±1.48 0.94±0.91 
pix2pix [17] 90.05±10.2 30.04±7.12 0.10±0.09 3.59±1.52 0.85±0.81 
StillGAN [18] 92.91±6.96 31.49±7.49 0.07±0.07 3.61±1.39 0.86±0.80 
DDPM [12] 70.72±8.34 26.10±3.99 0.24±0.07 2.56±1.55 0.93±1.23 
Ours 96.06±6.24 43.75±18.04 0.04±0.06 4.97±2.42 1.65±1.70 

Baseline - - - 3.62±1.40 0.85±0.96 
 
We evaluate the performance of our framework against several image translation 
methods. Specifically, we evaluate our model against a CNN network [11], GAN-based 
models pix2pix [17] and StillGAN [18], and unconditional DDPM [12]. Given, that 
those models are not designed for our particular task, we tune each of them and present 
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the best results. We employ the partial diffusion scheme on the unconditional DDPM 
network with λ=50. 

Quantitative results are presented in Table 1. The baseline represents original 
images. Our framework performs best in terms of all the metrics, clearly improving the 
contrast over the baseline values. The GAN-based models fail at improving the CNR 
values for both scar and myocardium and scar and blood pool. CNN achieves higher 
CNR than the baseline. However, the increase is not substantial. Wilcoxon signed-rank 
test was performed, and our method showed significant improvements compared to all 
other methods with P<0.01 on all the metrics. The global focus of those methods, with 
the local aim of our task, could be the reason the methods fail at enhancing the scar. 
Visual results, presented in Fig. 3, support this claim, showing that while the methods 
managed to correctly reconstruct the structure of the original image, little enhancement 
is applied. We present a closer view on our results in Fig. 4. The unconditional DDPM 
achieves the poorest performance, decreasing against the baseline CNR values.  

3.6 Ablation Study 

We perform an ablation study to evaluate the efficiency of our framework. The results 
are presented in Table 2. The study analyzes the effect of localized diffusion and mean 
enhancement on the performance of conditional diffusion. The addition of the localized 
diffusion improves on all the metrics, with the SSIM improving by 0.79 and the PSNR 
by 6.45dB. Both of the calculated CNR values are improved upon the inclusion of ROI-
only noising, showing the efficiency of our method on local image enhancement. 
However, while ROI-only noising improves the results, heart segmentation missing on 
the scar tissue can lead to failure in the contrast enhancement. Calculation of the mean 
image add additional improvements on both structural and contrast enhancement levels.  

Table 2. Results of the ablation study examining the strength of our methodology. Local stands 
for localized diffusion and mean represents inclusion of mean enhancement over k-images. 

Local Mean SSIM%↑ PSNR↑ LPIPS↓ CNR(scar,myo)↑ CNR(scar,blood)↑ 
× × 94.87±6.89 36.06±8.23 0.05±0.06 4.67±2.24 1.48±1.57 
✓ × 95.66±6.54 42.51±16.89 0.04±0.06 4.86±2.43 1.66±1.75 

✓ ✓ 96.06±6.24 43.75±18.04 0.04±0.06 4.97±2.42 1.65±1.70 
Baseline - - - 3.62±1.40 0.85±0.96 

4 Conclusion 

This is the first study to develop and evaluate a diffusion-based model to improve 
visualization of scar in LGE images. A localized diffusion model under a partial 
diffusion inference scheme allowed rapid LGE image enhancement. To adapt to the 
contrast changes in original images, we repeat the forward and reverse diffusion 
processes k-times to improve enhancement of the ambiguous regions of the scar. 
Through our framework, we show conditional diffusion models could be a promising 
method for scar enhancement. While localized nosing improves the results of scar 
enhancement, the heart segmentation network could miss the subendocardial scars and 
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thus exclude them from the enhancement area, constituting for a limitation of our 
framework. In future research this limitation can be mitigated via dilation, enlarging 
the segmentation region to ensure inclusion of the whole heart. In clinical practice, 
improper heart segmentation can be corrected by a clinician. Further research is needed 
to study the clinical implications of the contrast enhancement on the scar quantification. 
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