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Abstract. Camera localization in endoscopy videos plays a fundamen-
tal role in enabling precise diagnosis and effective treatment planning
for patients with Inflammatory Bowel Disease (IBD). Precise frame-level
classification, however, depends on long-range temporal dynamics, rang-
ing from hundreds to tens of thousands of frames per video, challenging
current neural network approaches. To address this, we propose Endo-
Former, a frame-level classification model that leverages long-range tem-
poral information for anatomic segment classification in gastrointestinal
endoscopy videos. EndoFormer combines a Foundation Model block, ju-
dicious video-level augmentations, and a Transformer classifier for frame-
level classification while maintaining a small memory footprint. Exper-
iments on 4160 endoscopy videos from four clinical trials and over 61
million frames demonstrate that EndoFormer has an AUC=0.929, sig-
nificantly improving state-of-the-art models for anatomic segment classi-
fication. These results highlight the potential for adopting EndoFormer
in endoscopy video analysis applications that require long-range tempo-
ral dynamics for precise frame-level predictions.
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1 Introduction

Crohn’s Disease (CD) is a chronic immune-mediated disease characterized by
transmural inflammation and mucosal ulceration throughout the intestinal tract
[1]. In clinical trials, endoscopy videos are acquired to score CD severity, typically
performed using the Simple Endoscopic Score for Crohn’s Disease (SES-CD) [14]
over five anatomic segments: rectum (RM), left colon/sigmoid (LC), transverse
colon (TC), right colon (RC), ileum (IL). Automated video segmentation to
anatomic segment classes is pivotal for automating SES-CD, possibly reducing
inter-rater variability, and enhancing the scoring system [20].
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Several methods for automating video segmentation rely on first identifying
the camera location relative to some point (e.g. the beginning of the video) using
powerful methods such as Simultaneous Localization and Mapping (SLAM) [7]
or Optical Flow (OF) [8,16]. After the camera location is fully mapped, segments
are identified by applying a fixed template to split the overall distance travelled
by the camera into regions [17,28]. In practice, these template-based approaches
can be unreliable because they do not account for inter-patient variations in
segment length and bowel elasticity.

To avoid these issues, some methods have focused on the direct classifica-
tion of frames into the anatomic segments, mostly using Convolutional Neural
Networks (CNN) [3, 10,22] or Long Short-Term Memory (LSTM) [11,12,19, 26]
networks. The typically large length of these recordings, which can exceed 60,000
frames (∼30 mins at 30 frames per second (fps)), has so far hampered the use of
methods able to capture long-range temporal dynamics, which we hypothesize to
be the key for the identification of landmarks needed for accurate segmentation.

Recently, the application of Transformers [25] in various domains has show-
cased their exceptional ability to capture long-range dependencies [2, 9, 27]
through self-attention mechanisms. Unlike CNNs and LSTMs that operate with
fixed window sizes, Transformers simultaneously consider all positions in the in-
put sequence, enabling the modeling of long-range dependencies. This strength
comes at a significant memory cost, however, making them impractical for long
endoscopy videos.

Motivated by these challenges, we present EndoFormer, aiming to strike a
balance between computational feasibility and high frame-level performance via
long-range consideration. To do so, we leverage a Foundation Model as a frame-
level encoder, utilizing state-of-the-art self-supervised learning to learn high-
quality frame-level representations. Furthermore, we employ a Transformer to
capture inter-frame spatiotemporal relations across the entire video for the down-
stream task of anatomic segment classification. The main contributions of this
paper can be summarized as follows:

◦ We propose a Transformer architecture for scalable segment prediction that
incorporates long-range spatiotemporal information from endoscopy videos;

◦ We train a Foundation Model using over 61 million endoscopy frames, the
largest dataset of its kind reported to date;

◦ We propose a set of video-level augmentations to improve model’s robustness
and generalization by mimicking real-world scenarios;

◦ We evaluate our model using two clinical trial datasets and improve ro-
bustness and generalization for automatic frame classification into SES-CD
defined regions.



Harnessing Temporal Information for Precise Frame-Level Predictions 3

Fig. 1. EndoFormer pipeline. Data Generation & Preprocessing (top): each video is
converted into deinterlaced image frames at 30 fps; each video might have different
number of frames (Ni), width (Wi), height (Hi), so they are resized to 224× 224× 3;
constant masking is applied to all frames to prevent data leakage from text annota-
tions already available in video frames. Modeling (bottom): masked frames are fed into
the Foundation Model that encodes them into dense, feature-rich representations (em-
beddings). Video-level Augmenter applies random splits and/or reversals during End-
oFormer model training to make the model robust against the real-world conditions of
the endoscopy video recordings. Downstream Transformer leverages self-attention to
effectively handle long-range dependencies while learning to classify each frame to one
out of 5 anatomic segments.

2 Methodology

2.1 Framework Overview

Our proposed framework, EndoFormer, consists of three components (Fig. 1):
a Foundation Model (FM) to extract enriched spatial features from frames; a
Video-level Augmenter (VLA) to enhance the model’s adaptability to various
real-world conditions, and a Downstream Transformer which, by leveraging the
encoded features, analyzes the video by considering both local and global tem-
poral relations between frames to perform the downstream classification task
without the large memory footprint of other temporal models.

Foundation Model: The FM encodes input data into a dense feature-rich spa-
tial representation. Building on its successful benchmarking in various tasks,
we employed DINOv2 [18] for pre-training the encoder through self-supervised
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Fig. 2. Example frames of CD endoscopy videos. (1) example showing all 5 segments.
In this data, the segment label as well as a progress bar indicating the location of
the endoscope are available as text at the bottom of the image. The gray area at
the beginning of the bottom progress bar represents the unannotated frames during
forward navigation from the anus to the terminal ileum. The ground truth segment
annotations for the SES-CD are made during the withdrawal phase of an endoscopy.
(2-5) examples of recordings missing some of the segments.

learning. DINOv2 employs a student-teacher model paradigm, where both mod-
els share the same architecture and utilize knowledge distillation. The student
model is trained on noisy variants of global views (224 × 224 × 3), while the
teacher model is exposed to variants of local views (96 × 96 × 3). The train-
ing objective involves DINO [4], iBOT [29], and KoLeo [21] losses, which are
collectively trained using a student-teacher setup.

LDINOv2 = LDINO + LiBOT + LKoLeo (1)

The outputs of the teacher model undergo centering via batch mean, and the
weights are updated using an exponential moving average of the student model
weights. Furthermore, we applied additional regularization techniques recom-
mended in [18] during the training process.
Video-level Augmenter: VLA was designed to mimic real-world conditions
that cause videos to start or end in non-standard colon segments. During the
endoscopy, physicians insert an endoscope into the anus and advance it to the
terminal ileum (in CD), cecum (in Ulcerative Colitis (UC), a different subtype
of IBD), or a location determined based on factors such as disease severity or
protocol (colonoscopy or flexible sigmoidoscopy). At any point during this in-
sertion, the video recording may be turned on and after the region of interest is
located, the clinician is instructed to withdraw the endoscope. These reasons lead
to a wide variety of ”ground truth” segments being present in clinical datasets
(Fig. 2). To account for this variability and to avoid biases during training we
devised a simple step whereby videos are randomly split and/or reversed prior to
being loaded by the downstream Transformer (see Algorithm 1). The constraints

±L

2
applied in lines 3 and 4 of Algorithm 1 were to ensure the augmented subset

F aug
i of Fi will have at least L rows after applying the random split. A lower

value of L may result in a small number of selected frames. In our experiments,
we set L to 2 for a more aggressive form of augmentation, while capturing a
wider range of video lengths during model training. The VLA has a negligible
effect on the training duration as it applies augmentations to the FM-extracted
features that map to the video frames.
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Algorithm 1: Video-level Augmenter

Input: Matrix of embeddings in ith video during training (Fi)
Output: Augmented subset of Fi (F aug

i )
1 rspliti ← Random float number between 0 and 1;

2 if rspliti ≥ 0.5 then

3 rspliti,start ← Random integer between 0 and
1

2
Ni −

L

2
where

L = {l ∈ Z | l > 0 and l ≤ Ni}
4 rspliti,end ← Random integer between

1

2
Ni +

L

2
and Ni

5 F aug
i ← Rows rspliti,start to rspliti,end from Fi

6 else
7 F aug

i ← Fi

8 end
9 rreversei ← Random float number between 0 and 1;

10 if rreversei ≥ 0.5 then
11 F aug

i ← Reverse the order of embeddings (rows) in F aug
i

12 end
13 return F aug

i

Downstream Transformer: The frame-level prediction problem is mathemat-
ically represented as Ĉi,j = S(fi,j), where S is the classification function that
maps the input embedding fi,j of the jth frame from the ith video (Vi) to

its corresponding anatomic segment class Ĉi,j . To accurately predict anatomic
segments, the classification function S must consider neighboring embeddings
and capture both short- and long-range dependencies. This is crucial because
anatomic segments demonstrate a biological order, and accurately incorporating
information from neighboring embeddings helps improve prediction accuracy.

To leverage long-range temporal relations for frame classification, we em-
ployed a Transformer architecture. The input matrix per video consisted of Na

i

frames with D-dimensional feature representing each frame, where Na
i is the

number of frames for Vi after applying VLA during training, and is the to-
tal number of frames (Ni) for Vi available during inference. This matrix was
passed through the Transformer, followed by a multi-layer perceptron (MLP)
for anatomic segment classification of each frame. The downstream Transformer
was trained using cross-entropy loss.

2.2 Datasets and Preprocessing

We used data from four clinical trials, involving 1847 patients and 4160 videos,
for training, validation, and testing. Two datasets comprised patients with
Crohn’s disease (CD) (ClinicalTrials.gov IDs: NCT03464136, NCT02877134),
while the other two datasets included patients with ulcerative colitis (UC) (Clin-
icalTrials.gov IDs: NCT02407236, NCT01959282). UC datasets lack anatomic
segment labels due to the global disease severity scoring used for UC, which
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does not include the SES-CD criteria. Thus, UC datasets were only used for
FM pre-training, not for the downstream task. We obtained high-quality ground
truth for our downstream transformer model through a hybrid approach. This in-
volved automatic text extraction using an OCR-based algorithm [24], followed by
meticulous manual review and refinement. This process was applied to all frames
from the CD clinical trial endoscopy videos. Approximately 50% of these frames
did not have textual annotations for anatomic segments, mainly due to their
placement in the forward path. These frames were categorized as ”Unknown”
and excluded from the downstream task. The remaining frames were mapped to
standardized anatomic segment labels: IL, RC, TC, LC, and RM. We allocated
over 21 million labeled frames from 1335 videos of 753 patients for Downstream
Transformer training, validation, and testing, using a 70:10:20% split ratio, re-
spectively. The 20% CD data allocated for Downstream Transformer testing was
excluded from FM training.

2.3 Settings and Metrics

EndoFormer: Our proposed EndoFormer pipeline consists of a Foundation
Model, Video-level Augmenter, and a Downstream Transformer. For the FM
(FV iT ) we used ViT-B/16 [6] and pre-trained it by utilizing the DINOv2 [18]
model training paradigm. We used a batch size of 256, cosine decayed learning
rate of 8 × 10−4 and Adam optimizer [13] for 15 epochs on 4 NVIDIA A10G
GPUs (total training = 8 days). The learning rate was warmed up for the first
10% of the iterations and then proportionally decayed to zero until the last iter-
ation. We used this encoder to extract features (D = 768) for each frame. The
Downstream Transformer has 4 layers and 8 self-attention heads in each layer
and a dropout of 0.25 for the Transformer layer and 0.5 for the final classification
layer. Adam optimizer with learning rate 10−5 along with a weight decay of 10−6

was used for training the EndoFormer model, and the model with highest AUC
on validation set was selected for model evaluation on test set.
Comparison with State-of-the-Art: We compare EndoFormer to best-
performing algorithms from four categories: template-based, CNN-based, LSTM-
based and Foundation-based models. For comparability, we have optimized all
these models on the same training dataset used for EndoFormer downstream
training. For template-based models [28], we used Gunnar FarneBack’s dense OF
method [8] to estimate the cumulative distance traveled by camera after which a
pre-defined template was used to map frame location to anatomic segments. For
CNN-based models [3], we trained a ResNet101 using a fully-supervised learning
approach and a weighted cross entropy loss to classify frames into anatomic seg-
ments. For LSTM-based models [12], we replace our downstream Transformer
classifier with an LSTM layer while using the encoded features from the FV iT

model. For Foundation-based models [6], we keep our encoded features that were
generated by the ViT-based Foundation Model (FV iT ) and replace the down-
stream Transformer classifier with a linear layer.
Evaluation Metrics:We used AUC, F1, Accuracy and Adjacent accuracy (Adj.
accuracy) as evaluation metrics for the downstream task. We investigated both
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Model mAvg AUC (%) mAvg F1 (%) Accuracy (%) Adj accuracy (%)

Endomapper [3] 67.5 ± 0.1 12.3 ± 0.0 29.4 ± 0.1 62.8 ± 0.1

ViT [6] 78.5 ± 0.0 45.7 ± 0.1 49.3 ± 0.1 77.4 ± 0.1

Template-based [28] 69.8 ± 0.0 50.6 ± 0.1 53.6 ± 0.1 93.5 ± 0.0

TMRNet [12] 85.7 ± 0.0 58.4 ± 0.1 61.6 ± 0.1 87.5 ± 0.0

EndoFormer (ours) 92.9 ± 0.0 70.5 ± 0.1 72.8 ± 0.1 95.4 ± 0.0
Table 1. Frame-level performance of different models on CD test set.

Fig. 3. Comparison between patient-level Accuracy (left) and Adjacent accuracy
(right) for each model on CD test set.

frame-level and patient-level performances. In the frame-level analysis we inves-
tigate the model performance across all frames in the test set, where we do a
bootstrap of test set size with 100 iterations to obtain the mean and standard
deviation (std) for AUC, F1, Accuracy, and Adj. accuracy. For patient-level anal-
ysis, overall Accuracy and Adj. accuracy are evaluated across all the frames for
each patient. Wilcoxon signed-rank test was performed to compare the perfor-
mance of different models; we chose this paired test because each method was
evaluated using identical train/test sets.

3 Results and Discussion

Table 1 shows that EndoFormer outperforms previous methods for frame-level
classification across all metrics. We find that fully supervised method and
template-based have the lowest AUC performance, followed by foundation en-
coder methods using linear and LSTM downstream classifiers. Additionally,
Fig. 3 shows EndoFormer’s superior patient-level performance compared to other
models (Wilcoxon signed-rank P < 0.05).

To better understand which component of EndoFormer was responsible for
this performance gain, we performed a series of ablation studies. Table 2 illus-
trates a major decline in the EndoFormer performance upon substituting the
FV iT with a ResNet101 pre-trained on ImageNet whereas only a slight per-
formance reduction was observed upon replacing FV iT with CNN-based Foun-
dation Model (FCNN ) with a ResNet101 backbone that was pre-trained using
SimCLR [5] model training paradigm. The difference between the patient-level
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Fig. 4. Ablation study assessing the impact of removing Video-level Augmenter for
EndoFormer with different type of FMs (left: FCNN , right: FV iT ). Three inference
conditions were tested: No perturbation (no random splits or reversals), Random split
(random video-level splits), and Random reverse (random video-level reversals).

performance using each of these FMs was not statistically significant (Wilcoxon
signed-rank P = 0.829 and 0.945 for Accuracy and Adj. accuracy, respectively);
however, FV iT is preferred here since its training time is ∼40% faster. Overall,
these results illustrate the impact of the FM in EndoFormer performance; using
FV iT or FCNN as the FM significantly improves the model performance com-
pared to using an encoder pre-trained on ImageNet. Additionally, we examined
the impact of VLA on the EndoFormer with FV iT and FCNN FMs. Fig. 4 demon-
strates that the proposed video-level augmentations during training effectively
mitigate the impact of random reversals and splits on patient-level performance
during testing. When there is no perturbations during inference, Accuracies are
similar with and without VLA (Wilcoxon signed-rank P > 0.05). However, under
perturbations of random reversals or splits, the EndoFormer with VLA surpasses
the EndoFormer without it (Wilcoxon signed-rank P < 0.005). In Fig. 5, the
t-SNE plot displays embeddings from the final layer of the Downstream Trans-
former on the CD test set. The plot reveals well-clustered embeddings for each
segment and closer clustering of neighboring segments. This demonstrates that
the combination of the FM with a spatiotemporal Transformer in EndoFormer
effectively captures both local and global representations.

4 Conclusions

We have developed a novel pipeline for frame-level classification of anatomic
segments in endoscopy videos. We introduced a spatiotemporal model to classify

Backbone
(Pre)training
mechanism

Accuracy (%) Adj. accuracy (%)
(Pre)training

Time

ResNet101 ImageNet 46.3 ± 20.3 (↓ 24.4) 78.0 ± 20.4 (↓ 17.1) -

ResNet101 SimCLR 70.4 ± 17.7 (↓ 0.3) 94.9 ± 10.8 (↓ 0.2) 14 days

ViT DINOv2 70.7 ± 15.8 95.1 ± 9.6 8 days
Table 2. Ablation study assessing the impact of substituting FM on patient-level
performance in EndoFormer. Last row is our proposed Foundation Model (FV iT ).
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Fig. 5. t-SNE analysis of the generated embeddings in the final Transformer layer of
EndoFormer (before the classification layer) for CD test set.

segments and developed video-level augmentations to make the model robust to
different real-world scenarios. Our results show that: 1) extracting features from
a domain-specific FM improves performance over more general pre-trained mod-
els, 2) leveraging Transformers to incorporate local and global information over
many frames improved model performance, and 3) applying the proposed video-
level augmentations during training makes the model resilient against random
perturbations introduced with different video splits and directions. Future work
will investigate the generalization of anatomic segment classification to other
types of IBD such as UC for novel endpoint development [15, 23]. Full automa-
tion will require automatically detecting the withdrawal path of the endoscope
as it navigates through the colon. Additionally, we will investigate the impact
of choosing different downsampling rates for the frames in the model’s perfor-
mance. Segmenting endoscopy videos is useful for automating the SES-CD and
developing advanced novel endpoints for localized disease scoring, though this
approach can be leveraged across a variety of tasks where global information can
improve local, frame-level classification.

Disclosure of Interests. All authors were employees of Janssen R&D, LLC, when

conducting this research, and may own company stock/stock options.
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