
Can Crowdsourced Annotations Improve
AI-based Congestion Scoring For Bedside Lung

Ultrasound?

Ameneh Asgari-Targhi1[0000−0002−1971−3962], Tamas Ungi2[0000−0003−4743−0609],
Mike Jin1,3[0000−0001−7237−6697], Nicholas Harrison3[0000−0002−8331−7833], Nicole

Duggan1[0000−0003−4829−4979], Erik Duhaime3[0000−0001−8026−4206], Andrew
Goldsmith1[0000−0003−0979−7178], and Tina Kapur1[0000−0003−3646−9508]

1 Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
aasgari@bwh.harvard.edu

2 Queen’s University, Kingston, ON, Canada
3 Centaur Labs, Boston, MA

4 University of Indiana School of Medicine, Indianapolis, IN

Abstract. Lung ultrasound (LUS) has become an indispensable tool at
the bedside in emergency and acute care settings, offering a fast and
non-invasive way to assess pulmonary congestion. Its portability and
cost-effectiveness make it particularly valuable in resource-limited envi-
ronments where quick decision-making is critical. Despite its advantages,
the interpretation of B-line artifacts, which are key diagnostic indicators
for conditions related to pulmonary congestion, can vary significantly
among clinicians and even for the same clinician over time. This variabil-
ity, coupled with the time pressure in acute settings, poses a challenge.
To address this, our study introduces a new B-line segmentation method
to calculate congestion scores from LUS images, aiming to standardize
interpretations. We utilized a large dataset of 31,000 B-line annotations
synthesized from over 550,000 crowdsourced opinions on LUS images of
299 patients to improve model training and accuracy. This approach has
yielded a model with 94% accuracy in B-line counting (within a margin
of 1) on a test set of 100 patients, demonstrating the potential of combin-
ing extensive data and crowdsourcing to refine lung ultrasound analysis
for pulmonary congestion.
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1 Introduction

Lung ultrasonography (LUS) has gained increasing importance in bedside diag-
nostic assessments and therapeutic management within acute care settings [18].
B-line artifacts in LUS, hyperechoic lines originating from the pleura and ex-
tending radially to the bottom of the screen, move synchronously with respi-
ration [15]. Despite their artifactual nature, B-lines play a significant role in
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detecting and evaluating the severity of various lung diseases. B-lines appear in
pulmonary congestion due to decompensated heart failure, viral and bacterial
pneumonia, or increased collagen deposition in the interstitial space due to au-
toimmune diseases or prolonged exposure to dust. The quantity of B-lines often
serves as a biomarker for disease severity, influencing treatment decisions. How-
ever, studies have noted considerable variability in B-line quantification among
observers, attributed to differences in expertise, operator dependence, and ac-
quisition settings. In clinical practice, physicians commonly rely on estimating
disease severity scores based on visual B-line quantification.

Fig. 1. Arrows pointing at B-lines in example images. Acoustic artifacts observed in
lung ultrasound (LUS) imaging, characterized by hyperechoic vertical lines originating
from the pleura line and extending to the bottom of the screen.

B-lines have been studied using classical image processing techniques as well
as contemporary deep learning methods. One of the earliest classical image pro-
cessing approaches transformed curvilinear LUS frames from polar coordinates
to a Cartesian grid, where B-lines appear as vertical lines, and then performed
column-wise handcrafted intensity-based features to detect B-lines [3]. B-lines
detection was posed as an inverse line-detection problem and solved using the
Radon transform [1], to which sparsity-enforcing and Cauchy-based penalty pro-
cess was added to regularize the solution [13]. More recently, wavelets were used
to denoise prior to using the Radon transforms to extract B-lines [7].

Among the earliest deep learning applications to B-line detection trained con-
volutional neural networks (CNNs) with gradient-based class activation mapping
on both phantom and patient LUS videos [24]. Spatial transformer networks were
used for COVID-19 scoring on a dataset with 277 LUS videos from 35 patients
with a weighted F1 score of 65.1% [22]. CNNs were trained on 153 exams of
adults containing 4651 videos and 122 exams of pediatric patients with 3022
videos to classify discrete and merged (confluent) B-lines, reporting an area un-
der the ROC curve of 0.92 [23]. CNNs were used for disease classification on
a dataset of 202 video clips and 59 images from 261 patients, achieving an F1
score of 0.92 [2]. Networks with a temporal shift module (TSM) were employed
to detect A-lines and B-lines in 665 LUS videos from 172 subjects with intraclass
correlation coefficients of 0.73 and 0.66, respectively [8].
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U-nets with domain adaptation were applied to B-line segmentation in COVID
and pneumonia on a dataset of 13 patients (1303 images) with a reported sen-
sitivity of 0.84 and specificity of 0.95 [17]. Mask R-CNN followed by a tracking
algorithm were employed to localize and count B-lines in dialysis patients. They
used data from 46 patients (1,003 images) for training and 15 patients (382 im-
ages) for validation and reported intraclass correlation of 0.9 with physicians [25].
U-Nets were used for segmentation of B-lines using a training set of 450 sim-
ulated phantom images supplemented by 41 patients (57 images) for transfer
learning, reporting a Dice Score of 0.7 [11].

The effectiveness of deep learning methodologies is significantly influenced
by access to the right quantity and quality of training data, which can be chal-
lenging to acquire due to limited availability of expert clinicians for generating
annotations. The strategies that have been explored to mitigate this challenge in
LUS image analysis include the use of publicly accessible annotated datasets [2],
the application of simulated LUS data [26], and the implementation of semi-
and self-supervised learning techniques [20, 14, 5]. As a method for increasing
access to large amounts of high quality training data, a gamified crowdsourc-
ing approach with extensive quality control metrics was recently introduced to
collect opinions from users on segmenting B-lines on frames from LUS videos.
By comparing the concordance of the crowdsourced segmentations to those from
clinical experts, they showed that crowdsourced consensus B-line segmentations
achieved expert-level quality [12]. This paper aims to investigate the potential
of utilizing crowdsourced data beyond the amount that expert clinicians can
provide for training U-net based models for B-line segmentation. Our approach
involves gradually increasing the crowdsourced training data and testing the
effect on segmentation accuracy and automatic B-line counting.

2 Methods

2.1 Data Description

This study utilized data from an IRB-approved retrospective review of medical
records for patients who presented to our emergency department with symp-
toms indicative of pulmonary congestion—such as shortness of breath, cough,
fever, weight gain—between October 9, 2020, and March 15, 2022. A cohort of
299 patients was selected based on the presence of a bedside lung ultrasound
examination in their institutional medical records, conducted in the emergency
department. The cohort had a mean age of 64.4 years, with 46% female sex
and 66% White race. LUS exams are acquired using the BLUE protocol [16],
which recommends recordings from 12 specific zones across the patient’s chest,
encompassing anterior, lateral, and posterior areas of both lungs. Each video
is recorded for six seconds to cover at least one respiratory cycle. The number
of clips per patient varied from 5 to 20, influenced by clinical constraints such
as patient comfort and stability. Low-frequency curvilinear transducers (C5 and
C5s) on a Mindray M9 ultrasound machine were used, with frame rates of 15-
46 Hz and variable settings for depth, focal point, and gain. No enhancement
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modes were applied. All LUS exams were downloaded for analysis in the Digital
Imaging and Communications in Medicine (DICOM) format.

2.2 Data De-Identification and Scan Geometry Extraction

A custom software module, AnonymizeUltrasound, was created on the 3D Slicer
platform to de-identify the LUS images. In addition to clearing the known DI-
COM tags associated with patient information, the de-identification process in-
cluded masking all pixels outside the fan-shaped ultrasound area. This removes
any burnt-in text, machine settings, or potentially identifiable information that
may compromise patient privacy or influence model training. Additionally, the
four corners of the ultrasound fan were recorded with each LUS video to en-
able computation of ultrasound scanlines. Extracting scanlines for data analysis
standardizes images acquired with different transducers and geometries for sub-
sequent model development.

2.3 Collection of annotations

Overview We obtained B-line annotations for all our available data in two
stages. First, we obtained classifications of all LUS clips from all patients as
having B-lines anywhere in the clip or not. Then, we annotated (i.e., segmented
using two points [(x1, y1), (x2, y2)]) B-lines on every frame of every clip classified
as having B-lines. For both the classification and segmentation stages, first we
collected expert annotations on a small subset of data to obtain a high-quality
expert consensus, and then we used the expert consensus as training material to
crowdlabel the remainder of the data.

Collection of B-line segmentations First, consensus expert classifications of
B-line presence on LUS clips were obtained for 400 randomly selected clips from a
50/50 train/test split of patients, with 200 from each 50/50 group of patients. Six
lung ultrasound experts classified all 400 LUS clips as having B-lines anywhere
in the clip or not, and an expert consensus classification was formed by taking
the majority opinion of the six experts with ties broken arbitrarily. The 200
training clips were then used to seed a crowdlabeling task to obtain high-quality
crowd consensus labels on all remaining clips [6].

Consensus expert B-line segmentations were obtained for 400 randomly se-
lected LUS frames from clips where the expert or crowd consensus found B-lines
present, sampled 50/50 by the same train/test patient split as above. Five ex-
perts annotated all 400 frames by segmenting all B-lines found in the frame. To
form the consensus annotation from five individual expert opinions, all B-lines
(in [0-100]-scaled coordinates by image size) were first clustered by agglomerative
clustering up to a Hausdorff distance of 10, and clusters containing B-lines from
at least three experts had their B-lines averaged to form an expert consensus
B-line. The 200 training frames were similarly used to obtain high-quality crowd
consensus segmentations on all other frames, verified in terms of both B-line
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count and segmentation accuracy using the 21,154 crowd opinions collected over
the first two days [12]. Over 530,000 opinions were then additionally collected
over the course of three weeks to obtain crowd consensus segmentations for all
31,168 frames.

Mechanics of crowdsourcing Crowd opinions were collected via DiagnosUs,
an iOS application on which thousands of participants compete daily for cash
prizes on a variety of medical data annotation tasks. Crowd annotators were
given an unlimited stream of randomly interspersed labeled (i.e., having a correct
annotation) and unlabeled cases with a relative frequency of 1:2. Initially, only
the 200 cases with expert consensus from the training set were labeled. After
submitting an opinion on a labeled case, annotators would be shown 1) the
correct annotation on the case as feedback for learning, and 2) their score on the
case, computed as the soft F1 score between their annotation and the correct
annotation. On unlabeled cases, annotators received neither. Their case scores
on labeled cases determined their leaderboard score and thus their eligibility for
cash prizes.

The skill level of individual crowd annotators was dynamically tracked using
a quality score ("Qscore"), computed as their trailing average (accuracy for clas-
sification, soft F1 score for segmentation) on their last 50 submitted opinions on
labeled cases. Opinions from annotators whose Qscore at the time was less than
0.8 were ignored, and the rest were considered "qualified". For the classification
crowdsourcing task, cases became labeled when they reached a minimum differ-
ence of 3 votes in the top two most common qualified opinions, and the correct
answer was set to the majority qualified opinion. For the segmentation crowd-
sourcing task, cases became labeled once they received five qualified opinions,
and the correct answer was set to the result of combining the qualified opinions
in the same manner as for expert consensus segmentations.

2.4 Data Pre-processing for Deep Learning

The dataset used in this study consists of 31,168 curvilinear (fan-shaped) ultra-
sound image frames with crowd consensus B-line annotations from 1,109 ultra-
sound clips of 299 patients. This data was split into a test set of 10,896 frames
from 383 clips of 100 patients, a validation set of 3,861 frames from 139 clips of
40 patients, and a training set of 16,411 frames from 587 clips of 159 patients.

The fan shape of the ultrasound was used to define a polar coordinate system
for each image where the origin of the polar coordinates is the intersection point
of the two sides of the fan (first and last scan line). The sound beams define the
radial direction, while top and bottom circles of the ultrasound area define the
angular direction of the polar coordinate system. All images were down-sampled
with a 128×128 grid in polar coordinates (Fig. 2). Training and evaluation of AI
models were performed on images in polar coordinates to standardize image size
and shape across different types of ultrasound transducers, and to keep acoustic
image features uniform across all images.
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Fig. 2. Original B-mode ultrasound image of size 500×520 pixels (A). Polar coordinate
grid shown as red dots (B). Same image in polar coordinate systems sampled at 128×
128 pixels (C). Image C transformed back to original cartesian coordinates to verify
no significant information loss (D).

2.5 Model selection and optimization

The first step in AI optimization was to select a model architecture for segmen-
tation. We trained four previously published models on a subset of the training
data, 3,392 frames from 26 patients for 100 epochs. The trained models were eval-
uated on the validation dataset. Implementations of the models in the MONAI
framework were used [4]. All training and testing experiments were performed
on the same computer with NVIDIA RTX 4080 GPU, 32 GB RAM, in a Python
version 3.9.18 environment with PyTorch version 2.0.1. The four candidate model
architectures were the U-Net [21], Attention U-Net [19], UNETR [10], and Swin
UNETR [9]. For these initial experiments, we used the default parameters of
each model in their implementations. The transformer-based models (UNETR
and Swin UNETR) exhibited considerably slower inference speeds, achieving
under 35 frames per second, compared to over 100 frames per second in other
models. No single model demonstrated significantly better accuracy on the val-
idation dataset. However, Attention U-Net showed slightly higher Dice scores
compared to the others, leading to its selection for subsequent phases of model
optimization.

The second step was hyperparameter optimization by experimenting with
random parameter adjustments for training. As a result, we configured the At-
tention U-Net to include five contracting and five expanding stages, with 8,
16, 32, 64, 128, and 256 channels at the model depth levels, respectively. 10%
drop-out rate was applied during training. The loss function for training was
L = 0.1 × (Dice) + 0.9 × (CrossEntropy). The maximum learning rate was
6.4 × 10−4 with linear warm-up and cosine annealing. The AdamW optimizer
was used for 100-200 epochs depending on the training data amount.

2.6 Experiments

Following hyperparameter optimization, we trained five Attention U-Net mod-
els with progressively larger labeled datasets. Dataset1: 5,233 frames (196 clips,
37 patients), Dataset2: 7,703 frames (285 clips, 53 patients), Dataset3: 10,207
frames (369 clips, 71 patients), Dataset4: 13,298 frames (483 clips, 114 patients),
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and Dataset5: 16,411 frames (587 clips, 159 patients). The batch size remained
constant at 64 while we adjusted the number of epochs upward for smaller
datasets to balance the reduced number of optimizer steps.

Trained models were evaluated using conventional pixel-based metrics and B-
line counting. Automatic B-line counting was implemented as counting connected
components in the images after applying a threshold on the segmentation outputs
at 1% intensity and resizing along the scanlines direction to an image height of
4 pixels to avoid counting B-lines multiple times (Figure 3). The highest B-line
count from each frame within a video clip determined the B-line count for that
clip. Clinically, this clip-level count, representing the peak number of B-lines
observed during 1-2 breathing cycles at a lung area, holds significance for each
clip.

As a reference for comparison to the models trained on Datasets 1 through
5, we also trained an Attention U-Net model using only the 400 frames with
expert consensus annotations (no crowdlabeling augmentation).

Fig. 3. Example images with one B-line (upper row) and two B-lines (lower row).
Columns show ultrasound image converted to parallel scan lines, crowd consensus an-
notation, segmentation output, and resized output for B-line counting

3 Results and Discussion

The percentage of correctly estimated B-lines increased with training data size.
The model trained only on 400 frames with expert annotations output the correct
B-line count on only 18% of test clips, and was within ±1 B-line or ±2 B-lines
on 24% and 29% of test clips, respectively. The number of test clips with correct
B-line count was 55% for Dataset1, 59% for Dataset2, 66% for Dataset3, 65% for
Dataset4, and 71% for Dataset5, and the number of clips within 1 B-line of the
correct value increased to 84% for Dataset1, 91% for Dataset2, 93% for Dataset3,
93% for Dataset4, and 94% for Dataset5. Figure 4 illustrates the errors in the
B-line counts that are computed from post-processing the results of the AUNet
outputs. Compared to the Dataset 1 model accuracies, the Dataset3 model sig-
nificantly improved accuracy (p=0.001 for exact B-line count, p<0.0001 for ±1
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and ±2 B-line counts). Results for Datasets 4 and 5 were similarly significant at
the α=0.05 level with FWER control.

Fig. 4. B-line count errors in the different models decrease by increasing training data
amount from 5k to 16k: Dataset1 (5k), Dataset2 (7.5k), Dataset3(10k), Dataset4(13k),
and Dataset5(16k). The bars show the number of test clips assessed correctly (green),
within 1 B-line error (yellow and blue), and within 2 B-lines error (orange and purple).

Our study introduces an innovative approach to B-line segmentation in lung
ultrasound (LUS) analysis. By using a novel gamified crowdsourcing technique,
we collected over 550,000 B-line annotation opinions within three weeks, result-
ing in more than 30,000 high-quality segmentations which replicate the accuracy
of clinician-produced segmentations at a much larger scale and greatly reduced
cost. Each expert took an average of 15 seconds per frame annotation, totaling
8.3 hours across 400 frames. By crowdsourcing annotations for our full dataset
(31K frames), we saved 650 expert hours.

We found that using more crowd-augmented data significantly improved
model accuracy: our Dataset5 model achieved 94% accuracy in providing B-line
counts for LUS videos within a margin of ±1 B-line, presenting a substantial
improvement in both reliability and scalability for automatic B-line detection
and scoring. One notable challenge encountered was annotation ambiguity from
distinguishing between single and merged B-lines. Future improvements could
involve using sectors to denote B-lines and calculating the occupied percentage
of the intercostal space for better consistency in B-line quantification.

The practical implications of this research extend into clinical practice, espe-
cially in the management of heart failure patients, where accurate monitoring of
pulmonary congestion is essential. By accurately counting and locating B-lines,
the AI model we have developed has the potential to streamline diagnostic pro-
cesses, reduce variability among clinicians, and support more consistent patient
care in acute settings. While promising, these advancements represent a major
step forward in lung ultrasound analysis rather than a complete solution, indi-
cating the ongoing need for technological and methodological improvements to
fully realize the benefits of AI in enhancing patient outcomes.
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