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Abstract. Self-supervised learning (SSL) has emerged as a promising
paradigm for medical image analysis by harnessing unannotated data.
Despite their potential, the existing SSL approaches overlook the high
anatomical similarity inherent in medical images. This makes it chal-
lenging for SSL methods to capture diverse semantic content in med-
ical images consistently. This work introduces a novel and generalized
solution that implicitly exploits anatomical similarities by integrating
codebooks in SSL. The codebook serves as a concise and informative
dictionary of visual patterns, which not only aids in capturing nuanced
anatomical details but also facilitates the creation of robust and gener-
alized feature representations. In this context, we propose CoBooM, a
novel framework for self-supervised medical image learning by integrat-
ing continuous and discrete representations. The continuous component
ensures the preservation of fine-grained details, while the discrete aspect
facilitates coarse-grained feature extraction through the structured em-
bedding space. To understand the effectiveness of CoBooM, we conduct a
comprehensive evaluation of various medical datasets encompassing chest
X-rays and fundus images. The experimental results reveal a significant
performance gain in classification and segmentation tasks.
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1 Introduction

Expensive annotations for medical images promote Self-Supervised Learning
(SSL) [6,15,13,8]. Recent developments demonstrate its effectiveness across di-
verse modalities, such as X-rays, MRIs, CT, and histopathology [16,23]. How-
ever, despite the advancements, existing methods like SimCLR [6], MoCo [15],
BYOL [13], and VICReg [3] encounter challenges when applied to medical im-
ages, in terms of effectively creating positive and negative pairs. The complex-
ity occurs due to inherent feature overlapping among different anatomical sub-
structures and across diverse image samples. Current SSL methods oversee the
anatomical overlapping and, thus, potentially compromise the model’s perfor-
mance and generalization capabilities.

In this work, we propose a simple yet effective technique involving learning
generalized features guided by a codebook [24,32], enabling the capturing of con-
cise discrete features. By associating similar anatomical features with common
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codes and distinguishing features with distinct codes, the codebook facilitates a
structured learning process, which overcomes the challenges associated, such as
defining effective positive and negative pairs [27]. This establishes a systematic
representation where recurring patterns are encoded consistently. For instance,
the presence of lung fields, ribs, and cardiac contours, common across chest
X-rays, may share the same or similar codes, providing a concise and shared
representation of prevalent features and creating a sparse but informative sum-
mary of the entire dataset. This introduces a strong structured inductive bias by
implicitly guiding the SSL model toward making assumptions about the common
patterns and structures present.

In this context, we propose an SSL framework named CoBooM: Codebook
Guided Bootstrapping for Medical Image Representation Learning. Specifically,
CoBooM encompasses a Context and Target Encoders for learning continuous
features and a Quantizer module to quantize the features using codebook and
integrate them with continuous features using the novel DiversiFuse sub-module.
The DiversiFuse sub-module utilizes cross-attention mechanisms that capitalize
on the complementary information offered by these two representations. The in-
troduction of the codebook encourages the SSL model to recognize and prioritize
the shared generalized common features during the training process. In addition,
the complementary integration of the continuous and discrete representations al-
lows the model to capture fine-grained features, contributing to a smooth and
rich embedding space. This leads to a more holistic and refined understanding of
the underlying data. We conduct experiments across diverse modalities to vali-
date its effectiveness, encompassing chest X-ray and fundus images. We evaluate
the proposed approach under linear probing and semi-supervised evaluation pro-
tocols and observe more than 3% performance gains in downstream classification
and segmentation tasks.

2 Background

Discriminative SSL Approaches: Discriminative SSL has seen advancements
with approaches like SimCLR [6], MoCo [15,7], BYOL [13], Barlow-Twins [30],
that captures generalized features by enhancing the similarity between positive
pairs while maximizing the dissimilarity between negative pairs either explic-
itly or implicitly. In medical images, discriminative SSL techniques, especially
contrastive approaches, have gained substantial attention and found meaningful
applicability. Various adaptations of contrastive methods, like MoCo-CXR [22],
for chest X-rays, MICLe [2] using multiple patient images, and MedAug [25] with
metadata-based positive pair selection, contribute to the improvement of medi-
cal image representations. Simultaneously, another approach, DiRA [14], unites
the discriminative, restorative, and adversarial learning to capture the comple-
mentary features. Zhou et al. propose PCRL [34] for X-ray and CT modalities,
later improved with PCRLv2 [33] addressing pixel-level restoration and scale
information. Kaku et al. enhance contrastive learning with intermediate-layer
closeness in their approach [18]. In [9], SimCLR was used for pre-training on
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Fig. 1. The architecture overview of the proposed framework. EMA is an exponential
moving average used to update the parameters of the Target encoder. gθ and gϕ are the
three MLP networks that serve as projection heads for Context and Target encoders.
f ′
θ serves as the decoder network.

multiple unlabeled histopathology datasets, improving feature quality and su-
perior performance over ImageNet-pretrained networks. In other studies [19,4],
authors showcased the efficacy of different SSL methods on large-scale pathology
data. While the existing methods show advancements, however they oversight
the significant anatomical similarities in medical data. The proposed approach
implicitly harnesses the anatomical similarities to capture more informative fea-
tures.
Codebook in Medical Image Analysis: Using codebook in medical image
analysis holds the promising potential [12]. By discretizing the data, code-
books can simplify complex medical image features, making them easier to an-
alyze [20,26]. Recent studies [11,31] highlight the effectiveness of learning dis-
crete representations through codebooks across various domains in achieving
interpretable and robust medical image retrieval, generation, recognition, and
segmentation.

3 Methodology

Fig. 1 provides an architectural layout of the proposed SSL framework, com-
prising a Context encoder parameterized by θ, a Target encoder parameterized
by ϕ and a Quantizer module. Additionally, two projection heads are denoted
as qθ and pθ and a decoder f ′

θ. The proposed framework adheres to the self-
distillation-based non-contrastive SSL paradigm [13]. The parameters θ undergo
updates through back-propagation of the loss, while the parameters ϕ are the
earlier version of the θ, updated using exponential moving average(EMA). Given
an input sample x, it creates two augmented views x1 and x2 by applying the
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random set of augmentations. x1 is processed by fϕ to output feature map yϕ
while fθ produces yθ from x2. Further, yθ and yϕ after passing through the global
average pooling layer, fed to predictor heads gθ and gϕ to output the embed-
dings zθ and zϕ carrying the global features. Subsequently, the target feature
map yϕ is quantized through the Quantizer module, utilizing a Codebook and
DiversiFuse sub-module to represent and compress the features effectively. The
following subsection provides details of the proposed quantization process.

3.1 Quantizer

The Quantizer module utilizes codebook, a predefined table containing K dis-
crete codewords represented as vectors ek, each of size D. These codewords are
employed to quantize the lower-dimensional continuous feature maps yϕ received
from the target encoder fϕ. The Quantizer module compares the features from
yϕ with each K codewords in the codebook to measure similarity by employing
the Euclidean distance. The module identifies the closest codeword to the en-
coded data through an iterative process across the codebook. Subsequently, the
module replaces the continuous encoded data yϕ with the selected codewords,
effectively transforming the representation from continuous to discrete yd. This
quantization is executed with the objective of minimizing the quantization loss
Lq = lcb +α ∗ lce comprising of two terms, codebook loss (lcb = ||SG[yϕ]− ek||22)
and the commitment loss (lce = ||yϕ − SG[ek]||22). Here, SG denotes the stop-
gradient operator, and α specifies the weight of lce. The codebook loss guides
the adjustment of the codewords ek towards yϕ. Simultaneously, the commit-
ment loss enforces yϕ to adhere to specific embeddings in the codebook, thus
preventing unregulated expansion.

DiversiFuse (Feature Fusion with Multi-Head Cross Attention):
Within Quantizer, the DiversiFuse sub-module guides the model through discrete
representations yd in determining which parts of the continuous information yϕ
are more relevant. It enables the model to learn to focus on different aspects of
the continuous representation based on the specific values in the discrete features,
potentially capturing more complex patterns and dependencies within the data.
It involves a multi-head cross-attention mechanism where the quantized features
yd pass through q to output yqd, and the continuous features yϕ pass through k and
v to output zkc and yvc respectively. The similarity scores between discrete queries
yqd and the continuous keys ykc are calculated as SScore(y

q
d, y

k
c ) = zqd · ykc

T . Sub-
sequently, the scores are transformed into attention weights using the softmax
function: σ(SScore(y

q
d, y

k
c )) denoted as ydc. The continuous values yvc are then

weighted by the attention weights ydc and summed: WSum(ydc, y
v
c ) =

∑
ydc · yvc .

The keys ykc help determine which parts of the continuous information should
be attended to, and the values provide the actual information to be attended to.
The process is repeated for all attention heads. The resulting aggregated repre-
sentation y′dc is obtained through concatenation across all attention heads. This
integration of discrete and continuous representations enables the exchange of
complementary information, enhancing the model’s ability to capture complex
patterns and improve performance.
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3.2 Loss Function

The output of the Quantizer module, denoted as y′dc, undergoes an average
pooling layer and is subsequently projected into a lower-dimensional space using
the projection head pθ. The resulting output of pθ is denoted as z′θ. To optimize
the parameters θ, the similarity scores between zθ and zϕ, as well as between zθ
and z′θ, are calculated using the loss function defined in Equation (1).

L1 =
⟨zθ, zϕ⟩

||zθ||2.||zϕ||2
,L2 =

⟨zθ, z′θ⟩
||zθ||2.||z′θ||2

(1)

Additionally, y′dc also fed to the decoder f ′
θ to output the reconstructed image

x′, enabling the model to capture local complementary features, formulated as
Lr = ||x−x′||2. The final loss Lθ = α(L1+L2)+Lq+γLr, where α and γ set to
0.5. Additionally, the symmetric form of the loss Lθ is utilized by interchangeably
feeding the views x1 and x2 to fθ and fϕ.

4 Experimental Setup

Descriptions of Datasets: For pre-training, we utilize a publicly available of-
ficial train set from NIH-Chest X-ray 14 [28] consisting of 86,524 X-ray images
and the fundus images from the EyePACS [10] dataset, have 35,126 samples. The
downstream classification task is performed on the officially available test set,
with 25,596 samples, and the retinal images from MuReD [21] and ODIR [35,17]
datasets have 2,208 and 7,000 samples, respectively, with 20% allocated as the
test set. To assess the performance for the downstream segmentation task, we
utilize the SIIM-ACR [1] dataset, consisting of 12,047 samples for pneumothorax
detection. We use equal numbers of positive and negative samples and allocate
20% for validation.
Implementation Details: We train the models on the Nvidia RTX A6000 with
the PyTorch framework. For backbone encoders (fθ and fϕ), we use ResNet18
architecture, with an input image size of 224×224, batch size of 64, and number
of epochs of 300. The number of codebook vectors are 1024, each of size 512. All
projection and prediction heads are three-layer MLP networks with an output
size of 256. For optimizing the parameters θ, we employ LARS [29] optimiza-
tion, a base learning rate set at 0.02. Additionally, we implement a cosine decay
learning rate scheduler without restarts. Codes are available at GitHub.
Baselines for Comparison: To assess the performance of our proposed ap-
proach, we compare it with supervised learning, with random initialization (Sup.)
and several established SSL methods, encompassing contrastive, non-contrastive,
and clustering-based techniques including SimCLR [6], BYOL [13], VICReg [3],
SwAV [5], DiRA [14], CAiD [23] and PCRLv2 [33]. Notably, we conduct the
pre-training for the baselines following their official implementations and using
the same training protocol as our proposed method.

https://github.com/azad6629/coboom/
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Table 1. Performance evaluation of the proposed approach in terms of AUC score
on the NIH, MuRed, and the ODIR datasets, and dice score for the pneumothorax
segmentation (SIIM) under linear probing. The best results are bold, SD is not shown
due to low variability.

Methods NIH SIIM MuReD ODIR

1% 5% 10% 30% All All 10% 10%

Sup. 51.6 55.1 57.1 61.1 61.8 48.4 58.6 56.4
SimCLR 56.9 59.7 62.7 67.6 70.0 50.3 72.1 70.2
BYOL 54.7 58.3 61.7 66.3 69.0 49.8 70.5 67.4
SwAV 55.5 59.1 62.4 67.7 70.2 53.4 71.6 70.8

VICReg 58.7 60.7 62.7 66.2 67.3 48.7 72.4 66.5
CAiD 63.7 67.2 68.9 70.3 73.5 55.3 70.7 69.5

PCRLv2 61.9 66.4 68.3 71.5 73.8 56.4 72.6 72.4
DiRA 60.8 65.8 68.6 72.6 74.1 56.8 71.7 70.8

Ours w/o Dec. 65.1 70.1 72.0 73.6 74.8 55.6 75.8 76.0
Ours w/ Dec. 64.9 70.3 72.4 73.3 74.3 57.5 76.0 75.3
Ours w/o DF. 63.3 68.6 70.9 72.1 73.4 54.9 74.6 73.8

5 Results and Discussion

Linear Probing Evaluation: Table 1 presents the experimental results on NIH,
SIIM-ACR, and fundus datasets under linear probing protocol. Specifically, the
parameters of encoder fθ remain frozen while that of the linear layer gets up-
dated. For NIH, we evaluate the performance by sample labeled subsets from
the official train set and report the official test set results in terms of AUC score.
Similarly, on MuRed and ODIR datasets, the test set AUC score is reported
by evaluating 10% of labeled training data. For pneumothorax segmentation on
SIIM-ACR, we report the results in terms of dice score by updating the parame-
ters of the decoder network while that of the encoder remains frozen. Supervised
learning (Sup.) notably yields lower AUC scores than the SSL methods. The pro-
posed approach consistently outperforms other baselines across varying degrees
of labeled data. Specifically for the 1% subset from NIH, when trained without
the decoder (f ′

θ), our approach achieves the highest AUC score of 65.1% with
an average performance gain of more than 3% from all the baseline methods.
When training the model with f ′

θ, the AUC score is 64.9%, which is comparable
to the model’s performance w/o f ′

θ. Fig 2 presents the diagnostic maps for differ-
ent pathological conditions corresponding to the 10% labeled samples from NIH.
The diagnostic maps are obtained during the downstream phase with the help
of Gardcam using the available ground truth details that include the annotated
regions and labels for a subset of NIH samples. A similar trend is observed for
MuReD and the ODIR dataset, where the proposed approach outperforms the
baselines with a considerable average margin of more than 3%. This indicates
the method’s ability to extract meaningful representations from unlabeled data
for the subsequent downstream training using limited labeled samples. Further-
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Fig. 2. Diagnostic maps for Atelectasis, Effusion, Cardiomegaly, and Mass correspond-
ing to the X-ray images from NIH indicate that CoBooM captures pathological features
effectively compared to other best-performing baseline methods. The bounding box in-
dicates the ground truth.

more, a similar improvement in AUC scores is observed with increased labeled
data. The proposed approach also results in the highest dice score of 57.5%
with the decoder on pneumothorax segmentation, with an improvement of 1%
compared to the best-performing baseline.

Table 2. Semi-supervised fine-tuning evaluation in terms of AUC score (%) on the NIH,
MuRed, and the ODIR datasets, and dice score for the pneumothorax segmentation.

Methods NIH SIIM MuReD ODIR

1% 5% 10% 30% All All 10% 10%

SUP. 57.7 62.7 65.6 70.7 74.1 51.2 66.7 63.2
SimCLR 62.1 65.7 68.9 72.2 75.6 53.3 80.9 73.4
BYOL 61.0 65.2 67.7 71.6 74.8 52.8 78.6 71.3
SwAV 61.7 65.6 66.9 72.1 75.8 54.4 79.4 72.7

VICReg 60.0 64.8 68.4 71.8 75.4 54.4 78.3 72.9
CAiD 64.4 69.6 71.3 73.8 77.4 56.5 81.0 73.1

PCRLv2 63.0 68.7 70.6 73.1 76.1 57.3 82.4 74.6
DiRA 62.7 67.3 71.2 74.5 77.8 58.8 81.6 73.4

Ours w/o Dec. 65.8 70.6 72.3 76.7 79.6 57.8 84.4 75.8
Ours w/ Dec. 65.6 70.8 72.1 77.1 79.3 59.6 84.8 75.7
Ours w/o DF. 63.7 70.0 72.2 76.3 78.9 57.1 83.1 74.2

Semi-Supervised Evaluation: Table 2 presents the test/val set performance
of the baseline methods and the proposed approach under the semi-supervised
evaluation protocol. We present the performance evaluation in terms of AUC
score on the NIH, MuReD, and ODIR and dice score on SIIM-ACR by fine-
tuning the backbone encoder fθ along with the linear layer using various subsets
of labeled data extracted from the training samples. We observe consistently su-
perior performance of the proposed approach over existing SSL methods across
all the subsets. Notably, our method (w/o f ′

θ) achieves the highest AUC score
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of 65.8%, with 1% of the training samples surpassing the baselines by a margin
exceeding 2%. When pre-trained w/ f ′

θ, the AUC score is almost similar w/o the
f ′
θ. The trend persists as the labeled data increases to 100%, with the proposed

approach consistently outperforming the baselines and maintaining an average
gain of 2%. MuRed and ODIR datasets have a similar performance gain, with
the highest AUC scores of 84.4 and 75.8 (w/o f ′

θ), respectively. For pneumotho-
rax segmentation also, we observe the highest dice score of 59.6% with a margin
of more than 2% compared to the best-performing baseline method. Further,
a paired t-test comparing our model with the best baseline method, DiRA, on
the SIIM dataset yielded a significant p-value of 0.012, indicating performance
differences.
Optimal Performance with Minimal Fine-Tuning: Upon comparing the
results presented in Table 1 and 2, a noteworthy observation is that our pro-
posed method demonstrates minimal or no need for fine-tuning of the backbone
encoder, especially with lower numbers of labeled training samples. Specifically,
at 1%, the proposed method achieves AUC scores of 65.1% and 65.8% under
the linear-probing and semi-supervised fine-tuning evaluation protocols, respec-
tively. Similarly, for 5% and 10% labeled training samples, our method’s AUC
scores remain comparable with negligible margins. This trend contrasts baseline
methods, where a substantial performance gain is observed from linear probing
to semi-supervised fine-tuning. This highlights the effectiveness of our proposed
method while demonstrating a remarkable capacity to achieve optimal perfor-
mance with minimal fine-tuning to adapt to different tasks. This signifies the
proposed approach’s adaptability and highlights its potential to derive meaning-
ful and transferable representations with minimal fine-tuning, which aligns with
the practical requirements of real-world settings where computational resources
may be limited.
Ablation Studies: We conduct an ablation study to examine the impact of
different components of the proposed approach under both linear probing and
semi-supervised evaluation protocols. In our first study, we evaluate the model’s
performance by performing the pre-training, with and without the decoder, by
keeping the DiversiFuse module. We pre-train the model without the Diversi-
Fuse module and the decoder for another study. Table 1 and 2 present the test
set results across various downstream tasks for these studies. We observe no
effect of the decoder on the model’s performance during classification tasks in
the downstream evaluations. The results are comparable w/ and w/o the de-
coder. However, while evaluating the performance on the segmentation task, we
observed superior performance when pre-training the model with the decoder
under both evaluation protocols. By reconstructing the input image from the
output of the DiversiFuse sub-module, the decoder encourages the model to fo-
cus on capturing fine-grained details, which are critical for segmentation. When
pre-train the model without the DiversiFuse sub-module in the Quantizer, we
observe a decline of around 2% across all tasks on evaluating the model’s perfor-
mance under linear probing. Under semi-supervised evaluation, the model can
maintain its performance even without the DiversiFuse sub-module; however, for
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classification with 1% labeled samples from NIH, we observe a degradation in the
AUC score of 2%. This highlights the importance of the DiversiFuse sub-module
in improving the quality of the learned representations with the help of discrete
features.

6 Conclusion

In this work, we propose an efficient SSL pre-training by integrating the discrete
and continuous features with the help of a codebook. We propose a novel Diver-
siFuse sub-module, which guides the model in learning generalized and better
representation and does not require much fine-tuning, especially when labeled
data is limited. We highlight the proposed model’s ability to capture complex
medical attributes with limited resource availability through empirical studies.
We evaluate the performance of the proposed approach by comparing it with
various SSL methods under both linear probing and semi-supervised evaluations
for both classification and segmentation tasks. This highlights its effectiveness
in handling various tasks associated with medical image analysis.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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