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Abstract. Magnetic Resonance (MR) imaging plays a vital role in clin-
ical diagnostics and treatment planning, with the accurate segmenta-
tion of MR images being of paramount importance. Vision transformers
have demonstrated remarkable success in medical image segmentation;
however, they fall short in capturing the local context. While images
of larger sizes provide broad contextual information, such as shape and
texture, training deep learning models on such large images demands
additional computational resources. To overcome these challenges, we
introduce a shallow attention feature aggregation (SAFA) module to
progressively enhance features’ local context and filter out redundant
features. Moreover, we use feature interactions in a resolution expan-
sion guidance (REG) module to leverage the wide contextual informa-
tion from the images at higher resolution, ensuring adequate exploita-
tion of small class features, leading to a more accurate segmentation
without a significant increase in FLOPs. The model is evaluated on two
dynamic MR datasets for speech and cardiac cases. The proposed model
outperforms other state-of-the-art methods. The codes are available at
https://github.com/Yhe9718/SANGRE.

Keywords: MRI segmentation · Shallow Attention · Resolution Expan-
sion

1 Introduction

Medical image segmentation is crucial for assisting clinicians in formulating
treatment plans and evaluating post-treatment conditions of various diseases.
The segmentation task involves classifying images at the pixel level to generate
maps that can delineate relevant structures. Recently, deep learning methods
such as UNet have advanced the state-of-the-art (SOTA) in this area [1][2][3].
UNet is a neural network with an encoder-decoder structure, which was first
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designed for medical image segmentation and has subsequently been applied in
a wide range of scenarios. Among the variants of UNet, UNet++[4], UNet3+[5]
and DC-UNet[3] have demonstrated promising performance for medical image
segmentation. However, in various tasks, CNN-based models have shown their
limitations in modelling the long-range spatial dependencies within an image.
To overcome this limitation, the attention mechanism has been developed and
incorporated into the CNN models [2]. The attention mechanism improves the
segmentation performance by selecting only a subset of important features to de-
tect the targeted objects. The vision transformer focuses on modelling long-range
dependencies with self-attention that capture correlations between all input to-
kens [6]. The vision transformer (ViT) was first proposed by Dosovitskiy et al. for
the classification task[6]. It splits an image into non-overlapping patches, which
are then fed into the transformer layer with positional embedding. A multi-head
self-attention module is utilised to capture the long-range dependencies. Mean-
while, Liu et al. introduced the Swin Transformer, enhancing computing effi-
ciency through shifting windows-based attention [7]. Similar to the Swin Trans-
former, the Pyramid Vision Transformer (PVT) is another hierarchical vision
transformer [8], utilizing spatial reduction attention to improve computational
efficiency. Encouraged by the success of vision transformers in various computer
vision tasks, several transformer-based segmentation networks have been intro-
duced, marking a further leap forward in medical image segmentation [9][10],
e.g., TransUNet was proposed to segment CT images [11].

Despite the recent progress in image segmentation introduced by CNNs and
transformers, both methods have limitations. The locality of convolutional op-
eration limits CNN’s scope to capture the global context, while the transformer
suffers from its constrained localization abilities, stemming from the inadequate
low-level feature representation. To integrate the advantages of both models
while overcoming their limitations, numerous hybrid models have been proposed.
Feiniu et al. use dual encoder consisting of a convolutional neural network branch
and a transformer branch to encode the images and produce complementary
features [12], while Yundong et al. utilize two CNN decoders to capture global
dependency and low-level spatial details, and then fuse the multi-scale features
of the two branches with a fusion module [13]. PVT-CASCADE relies on a
pyramid vision transformer to extract multi-scale features and a decoder that
progressively refines the encoded features while enhancing the long-range and
local context using attention modules [14].

In this study, we propose a new Shallow Attention Network Guided by Res-
olution Expansion (SANGRE). It starts with a transformer encoder, which pro-
duces encoded features that are enhanced by a shallow attention feature ag-
gregation (SAFA) module and a resolution expansion guidance (REG) module.
The SAFA module progressively enriches and aggregates the features with lo-
cal context, while REG module exploits contextual information from images
with expanded resolution to refine the feature map by interacting features of
expanded-resolution and coarse feature maps. By effectively leveraging both local
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and global contexts, the model excels in identifying small objects with enhanced
precision in shape details.

The key contributions of this study include: (1) The SAFA module allows
the local context to be progressively integrated to enrich the features. (2) The
REG module allows the broad context of an image with expanded resolution to
be used as prior knowledge to refine the coarse feature map. (3) The features on
multiple scales are progressively aggregated to complement the shortcomings of
Transformers by involving both local and broad context.

2 Method

The proposed Shallow Attention Network Guided by Resolution Expansion (SAN-
GRE) is schematically depicted in Figure 1. The network entails three branches:
(1) a transformer encoder that extracts multi-scale features with global context
from the training images; (2) a shallow attention feature aggregation (SAFA)
module to effectively fuse the multi-scale features for local context enhancement
in an accumulative manner; and (3) a resolution expansion guidance (REG)
module that utilizes the broadened contextual information from images with
expanded resolution, to refine the feature map from SAFA.

Resolution Expansion Guidance Module
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Fig. 1. Architecture of the proposed SANGRE network.

2.1 Transformer encoder

The proposed network first employs the Pyramid vision transformer(PVTv2) to
extract features from the images [15]. For an input image I of size C,H,W to
the network, four feature maps ei, for i = 1,2,3,4 with size of Ci, H

2i+1 ,
W

2i+1 , are
extracted by the PVTv2, where Ci is the channel number of ei. The PVTv2 is
pre-trained on ImageNet [16], to exploit the visual knowledge, which ease the
overfitting problem common to transformer encoders.
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Fig. 2. Schematic diagram of the SAFA module.
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Fig. 3. Schematic diagram of the REG module.

2.2 Shallow Attention Feature Aggregation (SAFA) for accumulated
local context enhancement

The transformer model exhibits limitations in capturing the local context. There-
fore, we return to the input image to look for additional local features that can
complement the features extracted from the transformer encoder. To retain more
contextual information about the input image, we first upsample the original im-
age by a scale factor of two. Then the upsampled image is sent to a series of four
transposed convolutional layers to produce four feature maps of the same size
as the encoded features. The complementary features are concatenated at each
level. Inspired by Jun et al.[17], which outlines the importance of appearance
information in shallow features, we introduce the SAFA module. The combined
features are sent to SAFA to gradually enhance the feature’s local context. The
structure of the SAFA is depicted in Figure 2. It takes four input features fi,
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i ∈ 1, 2, 3, 4, and each fi has the size of Ci,
H

2i+1 ,
W

2i+1 , where H and W are the
height and width of the original input image. All the features first pass a convo-
lutional layer. For easy notation, all convolutional layers are followed by batch
normalization and ReLu activation layers which are not depicted separately. Af-
ter passing the convolutional layers, features are upsampled to the same size as
the input image. Then, the features are progressively aggregated from shallow
to deep levels, as illustrated in the Figure 2. The combination is accumulative
and pairwise, so that after the aggregation three new feature maps are obtained,
namely, f ′

j for j ∈ 1, 2, 3. Finally, these combined feature maps are concatenated
and sent to a convolutional layer to learn the features. The resulting output
has the same number of channels as the number of classes to be segmented. To
summarise, the output feature map fsa from the SAFA module is formulated as:

f ′
1 = Up(Conv(f1))× Up(Conv(f2))

f ′
2 = f ′

1 × Up(Conv(f3))

f ′
3 = f ′

2 × Up(Conv(f4))

fsa = Conv([f ′
1, f

′
2, f

′
3])

where Up(·) represents the upsampling function, Conv(·) represents the con-
volutional layer with batch normalization followed by a ReLU activation, and [·]
represents concatenation.

2.3 Resolution expansion guidance module

For medical image segmentation, precise edge and boundary delineation are cru-
cial. High-resolution images incorporate finer details about the shape and tex-
ture of the target object, which can serve as an excellent resource for refining the
coarse segmentation mask. Motivated by the benefits offered by high-resolution
images, we design the REG module to facilitate the interaction between high-
resolution features and the coarse segmentation mask and thus improve the
segmentation mask with finer details along the boundary. In addition, the REG
module efficiently utilizes contextual information from the high-resolution im-
age while minimizing GPU memory usage. The module operates through two
distinct paths: the low-resolution and high-resolution paths. The high-resolution
path processes a large resolution feature, fh, while the low-resolution path han-
dles the low-resolution feature, fsa, obtained from SAFA. Initially, both features
are split into small patches. For the low-resolution patches, the process begins
with a pass through a convolutional layer, followed by upsampling to match the
size of fh patches. Subsequently, patches of fsa and fh are concatenated, and
each combined patch passes through another convolutional layer. Finally, the
output feature of the REG, fhr, is obtained by merging the patches to restore
the original resolution, followed by a downsampling to align with the size of fsa.

2.4 Feature aggregation

In the proposed network, two segmentation maps are obtained, one fsa from
the SAFA module and another fhr from the REG module, and aggregated by
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addition. Thus, the output segmentation map of SANGRE is represented as:

fout = fsa + fhr

The final feature combines the benefits of transformer encoding, which extracts
global contextual information, with local context features accumulation by the
SAFA module. It is further enhanced by detailed visual features acquired through
REG. Experiments show that overall feature leads to superior segmentation per-
formance.

Head Soft palate Tongue Vocal tract Jaw Tooth space

Ground Truth

Ground Truth TransUNet

TransUNet

PVT-CASCADE

PVT-CASCADE

PVT-GCASCADE

PVT-GCASCADE

Proposed

Proposed

Right Ventricle Left Ventricle myocardium

(a)

(b)

Fig. 4. Comparison of the segmentation results of different models on (a) ACDC
dataset and (b) speech MRI dataset.

3 Experiments

3.1 Datasets and implementation

Speech MRI Dataset: contains five series of 105, 71, 71, 78 and 67 images of
the upper vocal tract during speech and corresponding segmentation ground
truth[18, 19]. Each image contains 6 classes, namely, head, jaw, soft palate,
tongue tooth-space and vocal tract. For the experiment on the speech MRI
dataset, five-fold cross-validation is used, in which each fold trains on four series
and tests on the remaining one, ensuring the subject for test is always different.
Automatic Cardiac Diagnosis Challenge (ACDC) Dataset[20]: consists
of 100 cardiac MRI scans of different patients. Each scan has three classes,
which are the right ventricle (RV), spleen (SP) and stomach myocardium (Myo).
Following MT-UNet [21], 70 cases (1304 axial slices) are used for training, 10
cases(182 axial slices) are used for validation and 20 cases are used for testing.
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3.2 Implementation detail

The implementations of the models were all based on a Nvidia A5000 graphic
card and Pytorch 1.10 to allow a consistent comparison of the models’ perfor-
mance. All models were repeated three times and the averaged result is reported.
The models were trained for 150 epochs on the speech MRI dataset and 300
epochs on ACDC. All training images have size 256 × 256. The AdamW op-
timiser was employed [22]. The hyperparameters for optimization were set to
weight decay = 0.00001. A combination of Binary cross entropy (BCE) and Dice
loss was used as the loss function. The training and validation data batch sizes
were set to be 16 and 1, respectively. The learning rate was set as 0.0003.

Table 1. Comparison of performance of the diffrent models on the speech MRI dataset.
DICE Scores (%) in gray and Hausdorff distance (mm).

Model Head Jaw Soft-
palate

Tongue Tooth-
space

Vocal-
tract

Mean

UNet [1] 99.02 96.86 96.66 98.23 96.03 97.05 97.31
Att-UNet [23] 99.17 96.73 97.35 97.84 97.00 96.74 97.47
TransUNet [11] 99.46 96.65 96.66 98.31 95.53 96.70 97.20

PVT-CASCADE [14] 99.22 97.18 97.54 98.51 95.60 96.32 97.40
PVT-GCASCADE [24] 99.50 97.36 97.56 98.77 95.65 95.65 97.44

Proposed w/o REG 99.47 96.75 96.35 98.29 95.69 96.16 97.12
Proposed w/o SAFA 99.52 97.36 96.83 98.67 96.85 96.59 97.64

Proposed 99.61 97.86 97.71 98.98 97.30 97.06 98.09
UNet [1] 18.77 9.36 6.37 12.09 4.38 21.89 12.14

Att-UNet [23] 9.52 8.54 2.29 6.28 2.39 6.82 5.97
TransUNet [11] 16.34 7.66 3.60 18.65 2.75 14.00 10.84

PVT-CASCADE [14] 7.35 1.77 1.15 3.31 1.99 5.18 3.46
PVT-GCASCADE [24] 7.00 7.55 2.46 3.61 3.69 12.59 6.15

Proposed w/o REG 3.20 2.10 2.96 3.45 1.72 3.64 2.84
Proposed w/o SAFA 3.66 1.79 1.80 2.76 1.24 3.57 2.47

Proposed 4.05 1.66 1.09 2.37 1.08 3.11 2.23

3.3 Result and ablation study

Figure 4a shows a sample of the qualitative results on the ACDC dataset. The
SANGRE network, as proposed, more precisely preserves the shape of the right
ventricle compared to alternative methods. For speech MRI, as it is demon-
strated by the example in Figure 4b, the segmentation masks generated by the
proposed model uphold the structures of various classes with enhanced detail
and better precision. Moreover, the occurrence of outlier false classifications is
significantly reduced by the proposed method, especially within the head class.
Table 1 displays the quantitative performance results of several models on the
speech MRI dataset. The proposed SANGRE network outperforms other SOTA
approaches across all classes both in terms of the Dice coefficient and Hausdorff
distance. Specifically, a mean Dice coefficient of 98.09 % is achieved, which is
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roughly 0.6% higher than that of PVT-GCASCADE. Besides, our model ex-
hibits the lowest average Hausdorff distance of 2.23 compared to other methods,
demonstrating its capability to capture fine structural details. On the ACDC
dataset, similarly, a clearly advantage in Dice coefficient is observed comparing
against the SOTA PVT-GCASCADE, with a comparable number of parameters
and FLOPS, as presented in Table 2. The performance of the proposed network
excluding the REG and SAFA modules is also presented in Tables 1, and 2. It is
demonstrated in Table 1 that the employment of REG in the model significantly
reduces the Hausdorff distance in small feature classes, such as the jaw, soft
palate, and tooth space. Overall, the superior performance of the full model on
both datasets underscores the effectiveness of both proposed modules.

Table 2. Comparison of the performance of the different models on the ACDC dataset.

Model Avg Dice
(%)

RV Myo LV #Params
(M)

FLOPs (G)

R50+UNet [11] 87.55 87.10 80.63 94.92 - -
ViT+CU[11] 81.45 81.46 70.71 92.18 - -

TransUNet [11] 89.71 86.67 87.27 95.18 105.28 24.64
MT-UNet [21] 90.43 86.64 89.04 95.62 - -

MISSFormer [10] 90.86 89.55 88.04 94.99 - -
PVT-CASCADE [14] 91.46 89.57 88.9 94.50 34.13 5.84

PVT-GCASCADE [24] 91.95 90.31 89.63 95.91 26.64 4.252

Proposed w/o REG 91.45 89.28 89.41 95.66 24.89 5.29
Proposed w/o SAFA 91.57 89.38 89.61 95.73 25.87 5.34

Proposed 92.29 90.92 89.94 96.02 25.87 5.48

4 Conclusion

In this paper, we present a novel network SANGRE for MR image segmentation.
The network features two key modules: the Shallow Attention Feature Aggre-
gation module progressively eliminates irrelevant noise from the background of
the features, enriching the local context in the process; while the resolution
expansion guidance module enhances the feature map by leveraging the fea-
ture’s appearance information from images with expanded resolution, ensuring
the preservation of small-sized feature classes. While resolution expansion is in-
volved, the REG module only increases the FLOPs by 0.19G. Our experimental
results, conducted on the speech MRI and ACDC datasets, demonstrate that
our network surpasses other SOTA methods in all aspects.
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