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Abstract. 3D pose estimation from a 2D cross-sectional view enables
healthcare professionals to navigate through the 3D space, and such tech-
niques initiate automatic guidance in many image-guided radiology ap-
plications. In this work, we investigate how estimating 3D fetal pose
from freehand 2D ultrasound scanning can guide a sonographer to locate
a head standard plane. Fetal head pose is estimated by the proposed
Pose-GuideNet, a novel 2D/3D registration approach to align freehand
2D ultrasound to a 3D anatomical atlas without the acquisition of 3D
ultrasound. To facilitate the 2D to 3D cross-dimensional projection, we
exploit the prior knowledge in the atlas to align the standard plane frame
in a freehand scan. A semantic-aware contrastive-based approach is fur-
ther proposed to align the frames that are off standard planes based on
their anatomical similarity. In the experiment, we enhance the existing
assessment of freehand image localization by comparing the transforma-
tion of its estimated pose towards standard plane with the correspond-
ing probe motion, which reflects the actual view change in 3D anatomy.
Extensive results on two clinical head biometry tasks show that Pose-
GuideNet not only accurately predicts pose but also successfully pre-
dicts the direction of the fetal head. Evaluations with probe motions
further demonstrate the feasibility of adopting Pose-GuideNet for free-
hand ultrasound-assisted navigation in a sensor-free environment.

Keywords: Fetal Pose Estimation · Ultrasound Navigation · Multi-
modal Image Registration · Probe Guidance

1 Introduction

Ultrasonography requires an operator to be proficient in 3D spatial perception
to interpret the entire region of interest from the perspective of a single acous-
tic window. Clinical sonography workflow usually involves coarsely localizing
anatomy of interest, and then ultrasound probe refinement to reach a high-
quality anatomical standard plane (SP) for accurate examination. The task is
extremely challenging for obstetric clinicians when examining multiple anatomies
of a moving fetus [20]. An automatic system combining the two processes - fetal
pose localization and navigation to SP (as described in Fig. 1), would greatly
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Fig. 1. Principle of Pose-GuideNet. The system provides guidance on how to move to a
SP of 3D anatomy, and the corresponding probe movement would be inferred through
geometric mapping from 3D anatomy to the probe coordinate.

reduce scanning workload as well as provide trainee sonographers and occasional
users with heuristic guidance of probe manipulation to support SP acquisition.

Existing algorithms in the literature typically regard fetal SP detection as a
classification problem of still ultrasound (US) images [2, 11, 21] or video clips [3,
19]. Recently, guidance-based frameworks have been developed [5, 14, 15] to pro-
vide probe movement instructions for SP acquisition with the help of an external
motion tracker. Droste et al. [5] proposed a behavioral cloning system learned
from the action of expert operators to estimate the next probe movement, and
it is further extended [14, 15] with visual focus that simulates sonographer hand-
eye coordination for more accurate guidance. However, these guidance methods
are supervised by motion signals and rely on the previous probe motion to in-
fer how to move the probe towards SP. For the detection or guidance methods
mentioned, a key overlooked factor is the natural correlation between a freehand
scanning 2D frame and its position in the 3D reference frame of the viewed
anatomy, which is crucial for navigating within a 3D space during SP searching.

Methods for localizing a 2D US plane in a volumetric data space mainly refer
to pose estimation under 3D US [16]. With the known 3D spatial information,
an accurate 2D to 3D mapping can be achieved for pose estimations [4, 18, 24].
Yeung et al. [26] attempted to infer the pose of a freehand 2D fetal head image
from a 3D US-based network. The estimation is less satisfactory due to the in-
herent differences between the two imaging techniques. For example, 3D US is
normally anatomy-centered, while the structure in a freehand 2D scan can be
arbitrary position. To increase cross-modality performance, cycle consistency is
later adopted in [25] to link between 3D US slices and freehand images with a
minimum manual registration. However, these methods are limited by an effec-
tive evaluation metric without the actual 3D location of a 2D US frame, and
they are not targeted for SP acquisition guidance.

In this work, we fill the literature gap by combining the two fields: registering
the freehand US image to a volumetric atlas and automatically guiding towards
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SP in 3D anatomy. A uniform model, Pose-GuideNet, is proposed to first lo-
calize 2D US image without the need for manual registration, and then provide
scanning guidance to reach a SP image. The clinical target is head biometry ac-
quisitions, where a sonographer typically searches for the trans-ventricular plane
(TVP) and trans-cerebellar plane (TCP) to assess fetal brain development and
estimate gestational age. Pose-GuideNet first performs in-plane alignment by
registering the acquired SP frame in a real-world freehand scan to the biometry
view in 3D fetal head atlas. The rest of the scanning frames are then registered
through out-of-plane alignment with their geometry affinity informed by their
anatomical similarity. The method gives a relatively precise measurement by
comparing with probe motion data that reflects the true 3D position of the cur-
rent plane, which also facilitates the new evaluation methods of freehand image
localization techniques. Experimental results with both motion-based and image-
based evaluations demonstrate that Pose-GuideNet performs accurate pose es-
timation by preserving the direction and anatomical details of the query 2D
image. The estimated transformation towards SP may also drive the real-world
deployment of probe displacement in SP acquisition.

2 Methods

Figure 1 outlines the process of scanning guidance with Pose-GuideNet. The
system anticipates the transformation of the current US plane to the pre-defined
target viewpoint in 3D anatomy (i.e. TVP and TCP in fetal head scan). The
transformation can be further converted to probe movement for a human sono-
grapher to manipulate the probe to reach the target plane in freehand 2D scan-
ning. Figure 2 depicts the training workflow of the proposed pose localization
method. Since the position of 2D US image is unknown, a two-stage learning
strategy is considered for Pose-GuideNet: A pose encoder is initially trained on
sampled atlas 2D slices to capture the generic mapping between the anatomical
feature and its corresponding position in 3D space; It is then fine-tuned on free-
hand 2D US scans by 1) the Geometric-guided In-plane Alignment - supervised
alignment of the head standard planes and their directions based on the prior ge-
ometric knowledge on the atlas, 2) the Semantic-aware Out-of-plane Alignment
- unsupervised alignment of the off-plane frames to atlas w.r.t. their anatomical
similarity learned by a semantic encoder.

Problem Definition. The principle of the method involves establishing a
correspondence between the reference 2D US image and its cross-sectional view
in an open-sourced 3D atlas volume [17]. Given any 2D US image frame I in
a freehand fetal head scanning stream, Pose-GuideNet registers the US image
by predicting its location θ = {q, δ} including orientation (in quaternion) q =
[w, x, y, z] and translation δ = [∆x, ∆y, ∆z] in 3D brain anatomy. Then the
transformation of the US image towards SP is defined as qsp

I = q∗qsp (quaternion
multiplication) and δspI = δsp − R(qsp

I ) · δ, with qsp and δsp representing the
orientation and the translation of SP under the same coordinate of the 3D atlas.
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Fig. 2. Overview of Pose-GuideNet for pose localization of fetal head.

Here, q∗ denotes the quaternion conjugate and R(q) denotes the 3× 3 rotation
matrix of q, and sp ∈ {TVP, TCP}.

2.1 Pose Localization on 3D Atlas

Unlike existing methods [18, 25] that require the alignment and registration of
3D US volumes to atlas, we directly sample from the atlas volume to learn
its positional mapping without introducing the 3D US modality. The backbone
of Pose-GuideNet is a pose encoder (PoseE) based on ResNeXt50 [23]. Different
from [25, 26] that solely constrain the 3D position, we also incorporate the shape-
level similarity loss on the resampled 2D slice generated through a differentiable
spatial transformer [10] to stabilize the training process. This is done by sampling
the transformed grid Mθ̂ of the estimated parameters θ̂ on the atlas volume
(denoted as V ). Since the intensity-based image constraint will easily overwhelm
the adaption to US image fine-tuning, dice similarity coefficient (DSC) is used
here to preserve the region of interest in the resampled slice. Specifically, the
training objective on 3D atlas combines the shape-level dice loss and the pose-
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level regression loss:

Latlas(I
atl) = 1−

2
∑

k(V ◦Mθ̂(k)) · y(Iatl(k))∑
k(V ◦Mθ̂(k)) +

∑
i y(I

atl(k))
+ ||θ − θ̂||2, (1)

where Iatl is the input atlas slice at pose θ, θ̂ is its predicted pose, and y(Iatl(k))
is the binary label for Iatl at pixel k. ◦ denotes the grid sampling operation.

2.2 Cross-Dimension Cross-Modality Alignment on 2D US

The dimensional gap between 2D US and 3D atlas is one of the main challenges
that affects the 2D/3D registration accuracy. To overcome this obstacle, we pro-
pose to 1) establish an explicit mapping based on the cross-dimensional shared
SP frame, and 2) for the frames with unknown mapping, learn the closeness
of pose in 3D from their image-level conformity. The whole process includes the
standard plane alignment in a head acquisition scan with its geometric prior and
the alignment of its searching planes based on their anatomical features. As a
primary concern for head standard plane refinement, we focus on understanding
the change in orientation of the head plane without considering its translation.
The rotation group defined on the 3D anatomy is isomorphic to SO(3) [7] on a
Riemannian manifold structure, which allows us to establish a geodesic distance
representing the most direct path between the orientations of two planes. Here,
geodesic distance dG is adopted on the two types of alignments to measure the
closeness of 2D US images in the 3D atlas.

Another challenge is the cross-modality difference, and we reduce it by au-
tomatic recognition and removal of the unnecessary image background in 2D
US through cascading an image localization net [10] with MedSAM [12]. The
extracted foreground of fetal head is further processed by bilinear filtering [1] to
produce a smoothed, atlas-like image before pose localization.

Geometry-Guided In-Plane Alignment. To ensure the geometry cor-
rectness, the target SP of a scan is aligned to one of the standard viewpoints
(TVP or TCP) in atlas, each of which contains two opposite directions with the
predefined geometry positions (as shown in the top right of Figure 2). Specifi-
cally, given a US SP image Isp, the geodesic loss is given by

Lin
us(Isp) = αdG(qsp, q̂sp) = arccos(|< qsp, q̂sp > |) (2)

that is computed between the SP positional prior qsp and its prediction q̂sp,
where |< ·, · > | is the absolute inner product between two normalized quater-
nions [13]. Here, α is 0.5 given that the angle on SO(3) is half of the angle
between their corresponding 3D orientations [7]. This in-plane alignment step
allows Pose-GuideNet to identify the standard viewpoint, facilitating the geo-
metric error corrections during registration.

Semantic-Aware Out-of-Plane Alignment. In a US scan, the search-
ing frames before SP are of diverse angles in the 3D head anatomy, which are
essentially spanned across the rotation manifold. Inspired by the unsupervised
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manifold learning [9], we preserve the consistency in US images by contrasting
their mappings on the rotation manifold. The manifold nearest neighbors (i.e.
positive pairs) are selected from consecutive frames in the scan, which are geo-
metrically closest to each other in the scanning sequence. The negative items are
randomly selected frames within the same scan. However, given that two timely
distinct frames may be visually similar, we also incorporate semantic similarity in
negative items to advise their geometric closeness. The semantic similarity is to
compare their anatomical characteristics from a semantic encoder (SemanticE)
formed by SonoNet [2]. In particular, the alignment of an out-of-plane frame I
can be regularized by a semantic-aware contrastive loss of the quaternion triplet:

Lout
us (I) = − log

exp(cos(αdG(q̂, q̂
+))/τ)∑N

n=1 < S(I), S(I−n ) > exp(cos(αdG(q̂, q̂
−
n ))/τ)

, (3)

where I−n is the nth negative sample of I with the total number N set to 5.
S(I) is the encoded semantic feature, and the temperature τ is set to 0.8 which
controls the uniformity of the embedding distribution [22].

The overall objective for 2D US fine-tuning is to jointly optimize Lin
us and

Lout
us on a batch of US images with in- and out-of-plane collections.

3 Experiments

3.1 Data and Experimental Settings

In this study, the 2D US scans were collected as part of the PULSE (Percep-
tion Ultrasound by Learning Sonographic Experience) [6]. The clinical fetal US
scans were conducted on a GE Voluson E8 scanner. The US sequence is selected
10s before the cine-buffer-corrected SP and pre-processed to 6 Hz to reduce re-
dundancy. This study received approval from UK Research Ethics Committee.
There are 192 scanning sequences for the 2nd trimester fetal head biometry ac-
quisition, resulting in 10810 valid image planes. The training and test split is
7428/3382. Among all test planes, 2081 are for TVP scans and 1301 for TCP.
At each plane, the synchronized probe orientation q̃ is recorded by an IMU mo-
tion sensor, which is used for evaluation purpose. The 3D fetal head atlas used
is open-sourced [17]. 1059 US brain volumes collected from 899 fetuses were
used to generate the fetal head atlases for different gestational ages. Here, we
use the atlas at 20 week pregnancy as the median description of the fetal head
in the 2nd trimester. To better align with the atlas slice, the US video frame
was cropped to 224×288 and resized to 160×160 while keeping the aspect ra-
tio. The experiments were run with PyTorch 1.10.1 on a 32GB NVIDIA Tesla
V100 GPU. Pose-GuideNet is pre-trained and fine-tuned for 800 and 100 epochs
respectively, using Adam optimizer with a batch size of 8 and a learning rate
of 1e-4. To prevent overfitting, the last linear layer in PoseE is frozen during
fine-tuning.
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Table 1. Quantitative results of the estimated plane in terms of motion transformation
towards SP and image-level similarity.

Architecture
TVP

Motion Image
KL Divergence ↓ Dice(%) ↑ NCC ↑ MS-SSIM ↓

Sensorless

Random plane 19.89 43.52 0.169±0.03 0.614±0.07
Yeung et al. 18.89 55.03 0.271±0.07 0.556±0.08
Ours (pre-train) 18.17 65.47 0.277±0.09 0.537±0.10
Ours (ft. Geo.) 18.37 65.59 0.306±0.08 0.530±0.07
Ours (ft. Geo. Sem.) 17.33 66.91 0.315±0.09 0.529±0.09

Sensored US-GuideNet 15.01 - - -
Multimodal-GuideNet 14.79 - - -

Architecture
TCP

Motion Image
KL Divergence ↓ Dice(%) ↑ NCC ↑ MS-SSIM ↓

Sensorless

Random plane 20.32 44.89 0.183±0.03 0.619±0.06
Yeung et al. 20.03 57.11 0.308±0.10 0.536±0.08
Ours (pre-train) 19.13 69.11 0.312±0.05 0.532±0.05
Ours (ft. Geo.) 16.42 67.19 0.341±0.08 0.521±0.07
Ours (ft. Geo. Sem.) 15.47 70.12 0.353±0.08 0.511±0.07

Sensored US-GuideNet 15.27 - - -
Multimodal-GuideNet 14.62 - - -

3.2 Evaluations with Motion-level Correspondence

A clinical goal for 2D US image localization is to find the biometry plane for
fetal measurements. Because of the inherent correspondence between the probe
manipulation and the field of view change in the scanned anatomy [8], we utilize
the probe rotation towards its reached SP, i.e. q̃sp

I = q̃∗q̃sp, for evaluation of the
predicted transformation between the current plane and its expected standard
plane, i.e. q̂sp

I = q̂∗qsp. Since the probe and the 3D fetal head positioning are op-
erated under different coordinate systems, their angular or positional distances
are not directly comparable. We thus evaluate on the distributions of these two
rotation dynamics in a scan using the statistical metric of KL Divergence. Other
than the variations of our method, we compared with random plane assignment
and registration-based approach [26] with atlas pre-training, and US guidance
methods US-GuideNet [5] and Multimodal-GuideNet [15] based on probe mo-
tion prediction towards SP. These probe motion-based methods are considered
sensored as they predict under a behavioral cloning strategy given the previous
step from a motion sensor.

The results of different architectures are given in the Motion column of Ta-
ble 1. On these two types of head biometry scans, Pose-GuideNet consistently
improves under the sensorless method by gradually incorporating in-plane ge-
ometric (ft. Geo.) and out-of-plane semantic (ft. Geo. Sem.) alignments, which
reduce the motion error close to the baselines using extra sensor(s). Practically,
it is more challenging to locate TCP than TVP with the anatomical structure
of cerebellum much smaller in the brain. TCP is thus less likely to be sampled
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Fig. 3. The retrieved atlas planes of two example 2D head biometry acquisitions.

during pre-training with a larger localization error than TVP (20.03>18.89 and
19.13>18.17). However, by fine-tuning with geometric-guided alignment, Pose-
GuideNet can greatly improve cross-dimensional registration by reducing the
motion difference from 19.13 to 16.42. This is because the key plane serves as
a common baseline that establishes a spatial correspondence between the 2D
US and 3D anatomy. This correspondence is necessary for accurate mapping
especially for few-shot planes such as TCP.

3.3 Evaluations with Image-level Correspondence

The visual similarity between the queried 2D US image and the retrieved plane
from 3D anatomy is also compared in Table 1. Dice score, Normalized Corre-
lation Coefficient (NCC), and Multi-Scale Structural Similarity Index Measure
(MS-SSIM) are used as image similarity metrics, where MS-SSIM is more com-
prehensive than SSIM to tolerate scale variations of US images. From the results,
Pose-GuideNet generally shows consistent performance across different metrics
for both planes. A drop of dice score for TCP is observed when including the
geometric constraint (69.11% vs. 67.19%). This may be due to that in atlas, the
occipital bone ending around the cerebellum can be greatly deformed within a
small angle change [17] (as in supplementary material), which makes it sensitive
to the segmentation-based measurement. Figure 3 shows the result of retrieved
atlas planes from in- and out-of-plane frames in two head scanning sequences.
The anatomical structures (as highlighted by colored arrows) and head directions
are both aligned well with the input 2D image under Pose-GuideNet. Some key
structures, such as cavum septum pellucidum (CSP) highlighted in blue arrows,
are challenging to observe due to the acoustic shadow caused by ultrasound ar-
tifacts. However, Pose-GuideNet can better estimate them by learning from the
appearance of a neighbor frame with a different luminance condition.
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4 Conclusion

We propose Pose-GuideNet which estimates the 3D pose from freehand 2D US
image and its transformation towards SP in 3D anatomy, for the guidance of
fetal head biometry acquisition. The approach registers US image to a 3D atlas
volume using its prior knowledge of SP geometry as a baseline mapping, and
using the anatomical similarity to consistently align the rest of off-plane frames in
the scan. Extensive experiments show that the predicted plane is highly aligned
with the input US image in terms of both anatomical structures and direction.
Note that the Pose-GuideNet is a sensor-free method that can stand alone for
fetal head pose estimation. As a future step, geometric correspondence can be
incorporated that converts the transformation in 3D anatomy to probe motion
in real-world deployment. This will enable a multi-functional guidance system
for trainee sonographers, by providing not only a reference plane in 3D but also
the decisive motion in hand towards the target plane.

Acknowledgments. We acknowledge UKRI grant reference (EP/X040186/1), EP-
SRC grant (EP/T028572/1), and ERC grant (ERC-ADG-2015 694581, project PULSE).

Disclosure of Interests. The authors have no competing interests in the paper as
required by the publisher.

References

1. Banterle, F., Corsini, M., Cignoni, P., Scopigno, R.: A low-memory, straightfor-
ward and fast bilateral filter through subsampling in spatial domain. In: Computer
Graphics Forum. vol. 31, pp. 19–32 (2012)

2. Baumgartner, C.F., Kamnitsas, K., Matthew, J., Fletcher, T.P., Smith, S., Koch,
L.M., Kainz, B., Rueckert, D.: Sononet: real-time detection and localisation of
fetal standard scan planes in freehand ultrasound. IEEE transactions on medical
imaging 36(11), 2204–2215 (2017)

3. Chen, H., Wu, L., Dou, Q., Qin, J., Li, S., Cheng, J.Z., Ni, D., Heng, P.A.: Ul-
trasound standard plane detection using a composite neural network framework.
IEEE transactions on cybernetics 47(6), 1576–1586 (2017)

4. Dou, H., Yang, X., Qian, J., Xue, W., Qin, H., Wang, X., Yu, L., Wang, S., Xiong,
Y., Heng, P.A., et al.: Agent with warm start and active termination for plane local-
ization in 3d ultrasound. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 290–298 (2019)

5. Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Automatic probe move-
ment guidance for freehand obstetric ultrasound. In: Medical Image Computing
and Computer Assisted Intervention–MICCAI 2020: 23rd International Confer-
ence, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23. pp. 583–592 (2020)

6. Drukker, L., Sharma, H., Droste, R., Alsharid, M., Chatelain, P., Noble, J.A.,
Papageorghiou, A.T.: Transforming obstetric ultrasound into data science using
eye tracking, voice recording, transducer motion and ultrasound video. Sci. Rep.
11(1), 1–12 (2021)

7. Huynh, D.Q.: Metrics for 3d rotations: Comparison and analysis. Journal of Math-
ematical Imaging and Vision 35, 155–164 (2009)



10 Q. Men et al.

8. Ihnatsenka, B., Boezaart, A.P.: Ultrasound: Basic understanding and learning the
language. International journal of shoulder surgery 4(3), 55 (2010)

9. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: Metric learning
without labels. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 7642–7651 (2018)

10. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
Advances in neural information processing systems 28 (2015)

11. Lee, L.H., Gao, Y., Noble, J.A.: Principled ultrasound data augmentation for classi-
fication of standard planes. In: International Conference on Information Processing
in Medical Imaging. pp. 729–741 (2021)

12. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

13. Mahendran, S., Ali, H., Vidal, R.: 3d pose regression using convolutional neural
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion Workshops. pp. 2174–2182 (2017)

14. Men, Q., Teng, C., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Multimodal-
guidenet: Gaze-probe bidirectional guidance in obstetric ultrasound scanning. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 94–103 (2022)

15. Men, Q., Teng, C., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Gaze-probe
joint guidance with multi-task learning in obstetric ultrasound scanning. Medical
image analysis 90, 102981 (2023)

16. Mohamed, F., Siang, C.V.: A survey on 3d ultrasound reconstruction techniques.
Artificial Intelligence—Applications in Medicine and Biology pp. 73–92 (2019)

17. Namburete, A.I., Papież, B.W., Fernandes, M., Wyburd, M.K., Hesse, L.S., Moser,
F.A., Ismail, L.C., Gunier, R.B., Squier, W., Ohuma, E.O., et al.: Normative spa-
tiotemporal fetal brain maturation with satisfactory development at 2 years. Na-
ture 623(7985), 106–114 (2023)

18. Namburete, A.I., Xie, W., Yaqub, M., Zisserman, A., Noble, J.A.: Fully-automated
alignment of 3d fetal brain ultrasound to a canonical reference space using multi-
task learning. Medical image analysis 46, 1–14 (2018)

19. Pu, B., Li, K., Li, S., Zhu, N.: Automatic fetal ultrasound standard plane recogni-
tion based on deep learning and iiot. IEEE Transactions on Industrial Informatics
17(11), 7771–7780 (2021)

20. Salomon, L.J., Alfirevic, Z., Berghella, V., Bilardo, C., Hernandez-Andrade, E.,
Johnsen, S., Kalache, K., Leung, K.Y., Malinger, G., Munoz, H., et al.: Practice
guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ul-
trasound in Obstetrics & Gynecology 37(1), 116–126 (2011)

21. Sundaresan, V., Bridge, C.P., Ioannou, C., Noble, J.A.: Automated characteriza-
tion of the fetal heart in ultrasound images using fully convolutional neural net-
works. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI
2017). pp. 671–674 (2017)

22. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp.
2495–2504 (2021)

23. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1492–1500 (2017)

24. Yang, X., Shi, W., Dou, H., Qian, J., Wang, Y., Xue, W., Li, S., Ni, D., Heng, P.A.:
Fetusmap: fetal pose estimation in 3d ultrasound. In: Medical Image Computing



Guidance for Fetal Head US from Pose Estimation 11

and Computer Assisted Intervention–MICCAI 2019: 22nd International Confer-
ence, Shenzhen, China, October 13–17, 2019, Proceedings, Part V 22. pp. 281–289
(2019)

25. Yeung, P.H., Aliasi, M., Haak, M., 21st Consortium, I., Xie, W., Namburete, A.I.:
Adaptive 3d localization of 2d freehand ultrasound brain images. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
207–217 (2022)

26. Yeung, P.H., Aliasi, M., Papageorghiou, A.T., Haak, M., Xie, W., Namburete,
A.I.: Learning to map 2d ultrasound images into 3d space with minimal human
annotation. Medical Image Analysis 70, 101998 (2021)


