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Abstract. Neuroscience faces challenges in reliability due to limited sta-
tistical power, reproducibility issues, and inconsistent terminology. To
address these challenges, we introduce NeuroConText, the first brain
meta-analysis model that uses a contrastive approach to enhance the as-
sociation between text data and brain activation coordinates reported
in 20K neuroscientific articles from PubMed Central. NeuroConText in-
tegrates the capabilities of recent large language models (LLMs) rather
than traditional bag-of-words methods, to better capture the text seman-
tic, and improve the association with brain activation. It is adapted to
processing neuroscientific text regardless of length and generalizes well
across various textual content—titles, abstracts, and full-body. Our ex-
periments show NeuroConText significantly outperforms state-of-the-art
methods with a threefold increase in linking text to brain activations
in terms of recall@10. NeuroConText also allows decoding brain images
from latent text representations, successfully maintaining the quality of
brain image reconstruction compared to the state-of-the-art.

Keywords: Brain meta-analysis · Text-brain association · Contrastive
representation learning · Large language models (LLM).

1 Introduction

Hundreds of neuroscience articles are published each year, highlighting the ac-
cumulating knowledge within this domain. However, these studies often face
limitations, such as terminology inconsistency, small sample size, limited statis-
tical power, and reproducibility issues that undermine the reliability of articles’
findings [2, 3]. To tackle these challenges, brain meta-analysis aggregates results
from multiple studies to gain statistical power and enhance reliability [7, 10, 15].

Several efforts for brain meta-analysis have significantly advanced neuro-
science. BrainMap [13] is a database that provides structured information
about articles by curating reported coordinates and annotating them based on
a taxonomy strategy. However, as neuroimaging literature grows rapidly, it be-
comes difficult to manually curate databases to cover new publications. Neu-
roSynth [24] automates the meta-analysis of neuroimaging studies by identi-
fying relevant articles through keywords in their abstracts and extracting brain
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activation coordinates to create brain statistical maps. This process allows for
the efficient analysis of the whole literature. However, it relies on fixed key-
words, which limits its ability to capture complex research topics and detailed
insights. NeuroQuery [6] addresses these challenges by using a multivariate
model trained on full-text publications to predict brain locations for neuroscience
queries. It incorporates feature selection and adaptive regularization methods to
manage sparse, high-dimensional inputs effectively. However, it remains limited
by a bag-of-words model and a regression-based method that struggles to yield
high association scores between text and brain images. Text2Brain [17] links
text and brain imaging data by leveraging semantic insights provided by large
language models (LLM), but it is not effective in processing long input text,
resulting in weaker associations between text and brain images.

While meta-analysis methods mainly rely on regression-based techniques,
contrastive learning, a transformation-based approach, has been shown to ef-
fectively bridge text and image by establishing a shared latent space between
the two modalities [23, 9, 20]. In particular, CLIP [20] is a contrastive approach
for matching image-caption pairs. In CLIP, the contrastive learning framework
involves training a model to identify correct (image, text) pairings from a batch
of possible combinations. This is achieved by maximizing the cosine similarity
between the embeddings of the actual pairs while minimizing the similarity of
incorrect pairs, using a symmetric cross-entropy loss over these similarity scores.
CLIP demonstrates how training a text and image encoder within a contrastive
framework enables remarkable performance in associating text and image.

In this paper, inspired by the contrastive approach in CLIP [20], we introduce
NeuroConText, the first contrastive-based approach for brain meta-analysis that
enhances the association between neuroscientific texts and brain activation maps
by using a shared latent space between text and image modalities. NeuroConText
also leverages advanced LLMs like GPT-Neo-1.3B [1, 8] and Mistral-7B [11] to
bring semantics into consideration, unlike bag-of-words methods. It can process
text queries of any length, effectively handling diverse textual contents (title,
abstract or full-body text) from neuroscientific articles. By using the Dictionary
of Functional Modes (DiFuMo) [4] atlas, we address the high dimensionality
challenge of fMRI images. Our experiments demonstrate that NeuroConText not
only enhances the association scores by up to threefold compared to the baselines
NeuroQuery and Text2Brain, but also maintains the brain image reconstructions
from text latent representations.

2 Methodology

2.1 Data Preparation

Downloading Articles: To run coordinate-based brain meta-analysis, we first
download and prepare neuroscientific articles from PubMed Central (PMC) us-
ing Pubget. Pubget is an open-access tool that extracts text, metadata, stereo-
tactic coordinates, and Term Frequency-Inverse Document Frequency (TF-IDF)
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[21] from the articles. We expand the dataset used in NeuroQuery [6] from 14K
to 20K articles by incorporating recent publications.
Text and Coordinate Feature Representation: To perform accurate meta-
analysis on articles’ text and coordinates, we first provide suitable representa-
tions of these two modalities. For text feature representation, we propose to
use LLMs’ embeddings. We extract the embeddings corresponding to the arti-
cles’ data frames comparing four different models: SciBERT, GPT-Neo-125M,
GPT-Neo-1.3B, and Mistral-7B. For long input queries, such as analyzing the
full-body text of the articles, to overcome the token size limits of LLM, we divide
the texts into chunks matching the LLM’s token size limit. Subsequently, we gen-
erate embeddings for each chunk and represent the article’s text by the average
of these chunk embeddings. Our experiments with different aggregation strate-
gies showed that averaging chunk embeddings provides the best results. This
strategy for text data preparation addresses the limitations of the widely used
TF-IDF [21] approach. While TF-IDF measures the significance of a term in an
article compared to a set of articles, it remains a bag-of-words, and does not cap-
ture semantics. For the representation of stereotactic coordinates, we adopt the
approach outlined in NeuroQuery to create Kernel Density Estimation (KDE)
representations from activation peaks. To mitigate the risk of overfitting associ-
ated with high brain image dimensionality, we use the DiFuMo representation
coefficients of the images, choosing dictionary sizes 256 and 512 [4, 22, 14].

2.2 NeuroConText: Our Proposed Framework for Contrastive
Text-to-Brain Mapping

NeuroConText has two primary objectives: i) enhancing association between text
content and brain activation coordinates reported in the neuroscientific articles,
and ii) estimating brain activation maps from any given neuroscientific text.
NeuroConText overall framework is shown in Fig.1. We detail it below.
A contrastive model for text and brain association (Fig.1-A): Neuro-
ConText takes text embeddings and DiFuMo representation of the KDE as input
features. Then, to bridge the gap between these two different modalities i.e. text
and DiFuMo, we define a shared latent space through two distinct encoders. We
consider a projection head to encode text embeddings, and a residual head to
encode DiFuMo. We train these two networks simultaneously using the InfoNCE
contrastive loss [18], as done in the CLIP paper [20]. This training allows the
model to derive a shared latent space, capturing the intricate associations be-
tween the brain activation maps and the corresponding textual data.
Estimating brain activation map from an arbitrary text (Fig.1-B): We
train a decoder to transform text latent representations, obtained from the out-
put of the residual head, into brain images represented by DiFuMo coefficients.
This training occurs on the same dataset used for the text and image encoders.
Once the decoder is trained, in the inference phase, we can estimate brain im-
ages for any given neuroscientific query. This process involves extracting the
query embeddings from the LLM used during data preparation, passing these
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Fig. 1: NeuroConText: (A) We train a contrastive model on a large corpus to
retrieve a shared latent space between coordinates and text from neuroscientific
articles. We leverage pre-trained LLMs to obtain an initial text embedding from
the text and add a projection layer to align with embeddings of coordinates.
Snowflakes denote models with frozen weights. (B) We train a decoder from text
latent space to reproduce brain images from any query.

embeddings through the trained projection head to yield the text latent repre-
sentation. Finally, we estimate the DiFuMo coefficients of the query by feeding
the text latent representation into the trained decoder.

2.3 Related Work

Neuroquery is a brain meta-analysis tool trained on approximately 14K neu-
roimaging studies, which maps neuroscientific queries to brain images by ex-
tracting relevant terms through TF-IDF. It employs Gaussian Kernel Density
Estimation on peak activation coordinates to generate spatial representations of
brain activity. NeuroQuery uses Ridge regression to link TF-IDF features with
brain activation density maps, thereby estimating activations from text.
Text2Brain overcomes the fixed size vocabulary from TF-IDF through SciB-
ERT embeddings, which capture the semantic information of the literature. It
leverages a convolutional neural network to produce 3D brain activation maps
from the embeddings. To improve the model’s generalizability across various cog-
nitive concepts and tasks, Text2Brain uses data augmentation techniques, such
as varying query types. There are several differences between our NeuroConText
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method and Text2Brain, such as random text selection vs. long text processing,
the choice of LLM (SciBERT vs. Mistral-7B), high-dimensional brain maps vs.
DiFuMo coefficients, and regression via 3D CNN vs. introducing shared latent
space via text and image encoders and the use of contrastive loss.

2.4 Evaluation Metrics Across Methodologies

The evaluation framework is divided into two categories: one for text-brain asso-
ciation tasks (Fig.1-A) and the other for mapping text to brain images (Fig.1-B).

The first task is the ability of the model to retrieve the right brain activation
from a given input text. We evaluate the performance of NeuroConText on this
retrieval task through recall@K and Mix&Match. For a given input text, the
recall@K measures the presence of the true corresponding activation map in the
top K retrieved maps. The Mix&Match metric [16] quantifies the frequency with
which the estimated map more closely resembles the true map compared to a
randomly selected map from the test set. We compute those metrics for the
baselines by comparing the correlation of the predicted maps to the true target.

The second task is estimating brain activation from a given text. We leverage
contrast descriptions from the Individual Brain Charting [19] library and com-
pare the predicted activation to the average group through the Dice score [5]. For
a given threshold t, the Dice score Dt measures how well activations cooccurs
on the true target y and the predicted activation ŷ: Dt =

2(|1y>t1ŷ>t|)
|1y>t|+|1ŷ>t| where

1ŷ>t indicates if a given voxel activation is above threshold t and |.| indicates
the norm, corresponding to a volume in image space.

3 Experimental Results

3.1 Model architecture

The input text is processed through the Mistral-7b, a projection head composed
of a dense layer, GELU activation onto DiFuMo dimensional space, and two
residual heads. Each residual head module comprises a fully connected layer,
a GELU activation, a dropout with a rate of 0.5, and a normalization layer.
The brain map input is processed through three residual heads composed of
a dense layer and a GELU activation. We set the default batch size to 128,
learning rate 5e-4, and weight decay 0.1, over 50 epochs. The output size is
set to the DiFuMo dimension. The decoder consists of two residual heads with
the abovementioned composition. The code and architecture details are publicly
available at https://github.com/ghayem/NeuroConText.

3.2 Comparison with the baselines

In this section, we compare NeuroConText with NeuroQuery and Text2Brain.
We use the Mistral-7B LLM, and we set the DiFuMo dictionary size to 512.
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Fig. 2: Association of brain activation maps with article text: from a given query,
either the title, abstract or body of a neuroscientific publication, we measure the
ability of our model to associate the corresponding brain activation map. We
report the recall@K, K ∈ {10, 100}, and mix&match score detailed in Section
2.4. The evaluation is performed on 15-fold cross-validation with 1K test set.
NeuroConText performs better than NeuroQuery and Text2Brain. Our method
also successfully generalizes to long full-body text, while Text2Brain and Neu-
roQuery fail. For more numerical details see Table ?? in the Appendix.

We split the dataset into 19K train and 1K test samples. Subsequently, we re-
trieve the text latent and DiFuMo latent of the test set through the trained
projection head and residual head (Fig.1-A). Finally, we calculate association
metrics, Recall@K for K ∈ {10, 100}, and Mix&Match, on the test data. For a
fair comparison, we use the pre-trained models of NeuroQuery and Text2Brain
to estimate brain maps from the text in the same test set and calculate the
association metrics as detailed in section 2.4. To prevent leakage in evaluating
the performance of the two baselines, we exclude articles used in the training
of the NeuroQuery model from the test set. This experiment is performed with
15-folds cross-validation. The results, shown in Fig.2, depict the superiority of
NeuroConText over the baselines in associating text with corresponding brain
maps. Specifically, when comparing the recall@10 metric for body text, Neuro-
ConText achieves up to 22.6%, significantly outperforming NeuroQuery, which
only achieves 7%, and Text2Brain, which achieves 1.4%. Similar comparisons for
other text sections and association metrics underscore the effectiveness of our
contrastive method in linking text with brain maps, in contrast to the state-of-
the-art methods, which fall short. Finally, we remark that expanding the training
size from 10k to 19k enhanced NeuroContex’s performance by 4.5% (see Fig.??
in the Appendix).
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Fig. 3: (top) Thresholded projection on the surface of an IBC contrast definition:
read jabberwocky vs pseudo-word. We project each image on the surface and
threshold it, keeping 10% activation for each. Similarly, we plot the average
IBC map for this contrast. The color bar shows the statistical value for IBC
dataset (in z scale). (bottom) Encoding of IBC contrasts definition: We evaluate
our encoding model on IBC contrast definitions, showing that encoding from
the latent space performs similarly to other methods specifically trained for
encoding.

3.3 Estimating brain maps from text latent space representation

We show the capability of NeuroConText to generate brain maps from text la-
tent representations (see Fig.1-B). To assess the quality of these estimated brain
maps, we encode the definition of each contrast from the Individual Brain Chart-
ing (IBC) [19] image dataset. We compare the encoded definition to the IBC
average map with the Dice score detailed in section 2.4. As shown in Fig.3, the
scores of brain maps reconstructed from the text latents closely resemble those
derived from the baselines, indicating that the text latents of NeuroConText
contain significant information about brain activations.

3.4 Ablation study

NeuroConText vs regression-based strategies We compare NeuroConText
with regression-based methods to associate texts with brain maps. For Neuro-
ConText, we follow the procedure in Section 3.2. As a regression-based approach,
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Table 1: A comparison between proposed contrastive model NeuroConText and
regression-based strategies in text-brain association.

Method
Metric [%] recall@10 recall@100 mix&match

NeuroConText (ours) 22.6± 1.4 57.8± 1.6 84.2± 0.9

RidgeCV (linear model) 14.9± 0.8 43.7± 1.2 76.5± 0.4

MLP (non-linear model) 11.4± 0.4 39.4± 1.2 74.1± 0.8

Table 2: Comparing different LLMs and DiFuMo size on NeuroConText perfor-
mance. Mistral-7B paired with the DiFuMo 512 achieves the highest scores.

Setup
Metric [%] recall@10 recall@100 mix&match

DiFuMo 256

Mistral-7B 19.8± 0.9 51.6± 1.3 81± 0.6
GPT-Neo-1.3B 18.1± 0.6 48.2± 1.3 79.4± 0.3
GPT-Neo-125M 15.1± 0.6 42.3± 1.3 76.4± 0.3
SciBERT 15.1± 0.6 42.8± 0.9 76.9± 0.3

DiFuMo 512

Mistral-7B 22.6± 1.4 57.8± 1.6 84.2± 0.9
GPT-Neo-1.3B 21.5± 1.1 54.8± 1.1 82.7± 0.5
GPT-Neo-125M 17.5± 1.1 48.2± 1.5 79.7± 0.7
SciBERT 17.9± 0.8 50.3± 1.5 81± 0.8

we consider two models: RidgeCV (linear model) and a Multilayer perception
(MLP) (non-linear model). We set the MLP architecture with three linear layers
of 512 units each, incorporating layer normalization after the first two layers and
a dropout (p=0.5) after the first layer. This model was trained over 50 epochs
using the Adam optimizer [12] with a learning rate of 5e−4. We train these two
models on the average Mistral-7B embeddings of the full-body chunks to esti-
mate the DiFuMo coefficients. We evaluate the association performance of the
trained models on the test data with the metrics detailed in 2.4. As detailed
in Table 1, the regression-based methods fail to associate text with the brain
effectively. Meanwhile, the regression-based method in this experiment signifi-
cantly outperforms NeuroQuery and Text2Brain baselines, as shown in Fig.2.
This comes from replacing the TF-IDF and SciBERT embedding features in the
baselines with Mistral-7B embeddings and the proposed strategy for leveraging
the full-body text.
Impact of large language model and DiFuMo size. We compare differ-
ent LLMs and DiFuMo sizes on the performance of our proposed method. We
replicated the experiment in section 3.2, changing the LLM to GPT-Neo-1.3B,
GPT-Neo-125M, or SciBERT, alongside two DiFuMo sizes: 256 and 512. The
findings are summarized in Table 2. We see that the larger language model with
Mistral-7B significantly enhances performance, achieving a score more than 4%
higher than the SciBERT. The results indicate that the DiFuMo with size 512
outperforms 256, improving scores by approximately 3%.
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4 Conclusion

In this paper, we introduced NeuroConText, a new coordinate-based brain meta-
analysis framework. NeuroConText performs text-brain association on neurosci-
entific articles by defining a shared latent space between text and coordinates
modalities through a contrastive loss. By training a decoder, NeuroConText
also estimates brain maps from text. NeuroConText provides a new framework
to leverage articles’ full-body texts by segmenting long texts and using recent
advancements in LLM technology. We performed several experiments to com-
pare the performance of NeuroConText with two baselines, NeuroQuery and
Text2Brain. The results demonstrated NeuroConText’s superior performance in
associating texts to the brain, but show limited gain in predicting brain maps
from text latent representations. The latent space could benefit from combining
different loss objectives adapted to downstream applications. Our experiments
also included various ablation studies. We evaluated the impact of full-body text,
advanced LLMs, and DiFuMo dictionary size on text-brain association and map-
ping. In our ablation study, we also showed that NeuroConText enhances associ-
ation scores and text-to-brain mapping compared to regression-based methods.
As a future work, we will incorporate data augmentation into our framework,
and investigate other contrastive techniques.
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