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Abstract. Automated tools developed to detect multiple sclerosis le-
sions in spinal cord MRI have thus far been based on processing single
MR sequences in a deep learning model. This study is the first to ex-
plore a multi-sequence approach to this task and we propose a method
to address inherent issues in multi-sequence spinal cord data, i.e., dif-
fering fields of view, inter-sequence alignment and incomplete sequence
data for training and inference. In particular, we investigate a simple
missing-modality method of replacing missing features with the mean
over the available sequences. This approach leads to better segmenta-
tion results when processing a single sequence at inference than a model
trained directly on that sequence, and our experiments provide valuable
insights into the mechanism underlying this surprising result. In partic-
ular, we demonstrate that both the encoder and decoder benefit from
the variability introduced in the multi-sequence setting. Additionally, we
propose a latent feature augmentation scheme to reproduce this variabil-
ity in a single-sequence setting, resulting in similar improvements over
the single-sequence baseline.
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1 Introduction

Automated tools using deep learning have been developed in recent years to
aid in detecting and delineating Multiple Sclerosis (MS) lesions in spinal cord
(SC) MRI [4, 10, 6]. However, these tools process single input images per sub-
ject, rather than combining multiple MR sequences, as are often available [13].
While multi-modal brain MRI segmentation is common [1], spinal MRI poses
significantly greater challenges due to variations in fields of view, misalignments
between acquisitions, and potential motion artifacts [§].

Moreover, the diversity of protocols for SC acquisitions results in a “missing
modality” problem, i.e., not every sequence is available for each subject. This
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is an important issue in deep learning for medical imaging and has been stud-
ied over the last decade. A seminal 2016 study [5] proposed processing each
modality separately, and taking the mean and variance of feature maps across
the available modalities. However, this approach risks losing modality-specific
information. Recent works focus on learning better features for each modality,
using a combination of modality-specific encoders and shared encoders [11], or
using distillation to guide modality-specific encoders with a more informative
“teacher modality” [12]. Both [11,12] use a conceptually simple approach to fus-
ing the features from each modality, where the feature maps of missing modalities
are substituted by the mean of the features across available modalities (Mean
Imputation). Both studies outperform several state-of-the-art missing-modality
techniques in brain tumour segmentation.

The contributions of this study are as follows. Firstly, it is the first work,
to our knowledge, to explore a multi-sequence approach for automated multiple
sclerosis lesion segmentation in SC MRI. As such, we propose a pre-processing
pipeline to deal with the inherent challenges, including varying fields of view and
inter-sequence misalignments. Secondly, we carry out a thorough analysis into
the unexpected positive impact of Mean Imputation on single-sequence infer-
ence, revealing that the benefit arises from an improved robustness of both the
encoder and decoder. Finally, we propose a latent feature augmentation scheme
for single-sequence training to replicate the benefit of variability observed in
multi-sequence training.

2 Method

2.1 Data

The dataset used in this study consisted of MR images of 247 subjects with
MS from clinical studies! and the French MS Registry (OFSEP?)[9]. All sub-
jects provided written consent. The study was approved by the relevant ethics
committee and is compliant with French data confidentiality regulations.

Depending on the subject, different combinations of sequences among sagittal
T2w (T2Sag), sagittal STIR, axial T2*w (T2*Ax), axial T2w (T2Ax), isotropic
T1w without gadolinium, and MP2RAGE were acquired to image the SC. For
each subject, we included all available acquisitions (see Supple. Fig. 1 for details).

The fields of view (FOV) vary significantly between different sequences for a
given subject. For example, the T2Sag scans (acquired in two overlapping slabs)
can cover from the brainstem to the lumbar vertebrae, while T2*Ax only covers
C1 to C7. All subjects had at least one T2Sag scan of the upper SC (typically
to T3-T4), which is the most common acquisition in clinical practice [13]. For
102 subjects, the acquisitions did not include the lower SC.

For a given subject, SC lesions were delineated on the T2Sag image by one of
six experts using all available acquisitions. One independent experienced rater

! clinicaltrials.gov study IDs: NCT02117375, NCT04220814, NCT04918225
2 OFSEP data available on request: https://www.ofsep.org/en/data-access
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revised all the obtained segmentation masks to increase consistency across the
dataset. The annotated dataset was split into a training set (N=162 subjects), a
validation set (N=27) and test set (N=>58). The test set had three subsets from
distinct cohorts, denoted D 4, Dp, Do, with 18, 20, and 20 subjects, respectively.

2.2 Pre-processing

Our pre-processing pipeline consisted of the following four steps.

Intra-sequence fusion and alignment For a given subject, when multiple
scans were acquired with one sequence (e.g. C1-C3 and C4-C7 for T2*Ax), these
were merged into one, taking half of the overlapping region from each image.
An initial rigid registration was performed between the upper and lower images
of the same sequence to address artifacts resulting from misalignment. This
registration was, however, not applied to the axial acquisitions, mostly because
of the lack of overlap between images.

Inter-sequence alignment The SC is a narrow and highly mobile structure,
so small subject movements between two acquisitions can introduce non-linear
deformations. Correcting for subtle deformations between images of different
sequences in a fully automated way is challenging. Moreover, non-linear regis-
tration is likely to significantly alter the intensity profile and thus can deteriorate
the signal of interest. Therefore, we did not apply non-linear inter-sequence reg-
istration, but rather relied on aligning the SC centreline in each image. The
centreline was found independently for all sequences using the corresponding
deepseg models from the Spinal Cord Toolbox [2].

Inter-sequence resampling To address variations in image spacing and FOV,
all available images were resampled to a reference image grid with isotropic
0.5mm spacing. The extent of this reference grid in the superior-inferior axis was
determined by the maximum extent of the SC masks obtained in the previous
step, plus a margin of 10mm either end to ensure the full SC was captured.
Images were padded with zero for voxels outside of their initial coverage.

Data cropping Finally, to reduce image size and, thereby, the time required to
train a model, the images were cropped and shifted around the SC centreline, as
in [4]. Specifically, for each axial slice, the image was cropped to 48 x 48 voxels
around the centreline. The cropped axial slices were then stacked vertically.

2.3 Architecture

T2Sag Baseline Our baseline 3D U-Net architecture, based on nnU-Net [7],
processed a single sequence. Patch size was set to (48, 48, 320) voxels in RPI
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orientation, covering the full pre-processed image in the axial plane. Four down-
sampling operations were employed and the convolution channels for each reso-
lution were: 32, 64, 128, 256, 320. All convolutional kernels applied in all models
had size 3 x 3 x 3. Deep supervision was applied to the two decoder layers closest
to the original resolution. We used the sum of cross-entropy and Dice losses. The
learning rate was 0.01 and was decayed polynomially. The SGD optimiser used
Nesterov momentum (0.99) and weight decay (3 x 107°).

Multi-sequence When training with multiple sequences, one encoder was ini-
tialised per sequence, each generating a set of features with 320 channels, de-
noted as fy, where k € K* = {T2Sag, STIR, T2*Ax, T2Ax, Tlw, MP2RAGE}.
These features were concatenated, resulting in a combined feature map of 320xn
channels, where n is the number of sequences used. A convolution with 320 out-
put channels was then applied, followed by a single decoder. Results of training
models on specific combinations of sequences are presented in Sec. 3.1.

We merged features from different sequences only at the bottleneck of the
U-Net model to mitigate the effect of potential remaining inter-sequence mis-
alignments. The effective resolution at the bottleneck was 4 x 4 x 8 mm, whereas
the input images had a finer 0.5 x 0.5 x 0.5 mm resolution. Similarly, the skip
connections to the decoder were taken only from the T2Sag encoder because 1)
there is more T2Sag data so we believed it would give the strongest result, and
2) the ground truth was created on the T2Sag, so the precise localisation is more
relevant for these images than the other sequences.

Mean Imputation The missing-modality approach involved training a model
on images from all subjects and all six sequences. The same architecture was used
as in the multi-sequence setting, here with six encoders (see Supple. Fig. 2). The
bottleneck had 320 x 6 = 1,920 channels after concatenating the features from
each sequence. During both training and inference, if a sequence was missing for
a subject, the 320 bottleneck features for that sequence were imputed by the
mean of the features from the available sequences for that subject, as in [12].
Given a subject S;, whose available sequences are denoted IC; C *, and missing
sequences J; = K* \ C;, then the missing features f; ;, j € J;, are imputed as

1
f;, = — E f; 1
2J |/Cl| K ( )

ke,

2.4 Understanding Mean Imputation

Improved Encoder Results with Mean Imputation showed that training with
multiple sequences benefited the model even when using a single sequence for
inference, by learning more robust encoder and/or decoder representations. To
isolate the effect on the decoder, we conducted an experiment with Mean Im-
putation with a frozen encoder. Specifically, we extracted the learned weights
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from the T2Sag baseline model and froze these during training so that the Mean
Imputation model could not learn better T2Sag features.

Secondly, we experimented with a distillation loss on bottleneck features as
in [12]. We maintained T2Sag as the teacher modality, being the most common
sequence in our dataset and the reference image for manual segmentations. The
distillation loss was calculated as L1 loss between the feature values of T2Sag and
other sequences at the bottleneck. Given a subject S;, with available sequences
K; C {T2Sag, STIR, T2*Ax, T2Ax, Tlw, MP2RAGE}, the distillation loss is:

1
Lr1(8;) = =1 Z I|fi. 72509 — £ik)||1 (2)
IKCil keK;,k#£T2Sag

The distillation loss was weighted by o = 0.1, as in [12], and added to the loss.

Improved Decoder Results suggested the increased variability of features seen
when training with Mean Imputation may benefit the generalisation of the de-
coder. To model this variability in a single-sequence setting, we propose a method
applying random perturbations to the latent features of a T2Sag model. These
perturbations were carefully determined based on the distribution of differences
between T2Sag features and other sequences from a trained Mean Imputation
model. We observed two parts to the distribution, which were modelled with a
logistic distribution (¢ = 0, s = 0.002) for 25% of the differences and a nor-
mal distribution (u = 0, o = 0.4) for the remaining 75%. Noise was generated
according to this distribution during each training iteration and added to the
bottleneck features from the T2Sag image (f72544), followed by a Leaky ReLU
layer to avoid introducing large negative values into the features.

2.5 Evaluation Metrics

We used the Dice coefficient and lesion-wise F1 score to evaluate the models. The
definition of lesion-wise F1 followed that of [10]: a ground-truth lesion is a true
positive if at least 10% of its voxels are detected, while a predicted lesion is a
false positive if over 70% of its voxels do not overlap with a ground-truth lesion.
Lesion-wise sensitivity, precision and F1 can then be computed (F1 defined as
F1 = 2 x (Precision x Sensitivity)/(Precision + Sensitivity)). Dice and F1
were computed for each image, and the mean result across images is reported.
Further metrics are presented in Supple. Figs. 3 and 4.

Each model was trained three times with a different random seed. The stan-
dard deviation over these runs is reported in Table 1, as well as a Wilcoxon
signed-rank test comparing the results for each image to T2Sag baseline.

3 Results and Discussion

3.1 Comparison to Baselines

Table 1 presents the lesion-wise F1 and Dice scores of baseline models trained on
specific combinations of sequences, as well as the Mean Imputation technique.
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Since not every sequence was available for each subject, training on specific
combinations of sequences means training on a subset of subjects. As a result,
these models generally underperform compared to the T2Sag baseline, except
for one instance where the model trained on T2Sag, T2*Ax and T1w achieves a
slightly higher F1 (0.593) than the T2Sag baseline (0.583).

The Mean Imputation method was trained on all available sequences per
patient and can adapt to the sequences available at inference. Incorporating
additional sequences at inference generally improved performance compared to
using T2Sag alone, although there was a slight decrease in F1 score when using
T2Sag and STIR (0.637) vs. T2Sag alone (0.641) on test set D 4. However, these
differences in performance are modest. The largest improvements in F1 and Dice
of 0.016 and 0.025, respectively, were observed when using T2Sag, T2*Ax and
Tlw on test set Do compared to using T2Sag alone. Future reasearch aims
to improve performance in the multi-sequence setting by, for example, fusing at
different depths, investigating alternative fusion methods, and leveraging manual
segmentations from other sequences as auxiliary tasks for feature extraction.

Comparing Mean Imputation to the T2Sag baseline yields a more interesting
finding. Surprisingly, Mean Imputation significantly outperforms the T2Sag base-
line, even when using only T2Sag data at inference. Both models were trained
on the same amount of T2Sag data, with the same hyperparameters and have
nearly identical architectures, differing only in the bottleneck. Mean Imputation
replaces the features of missing sequences with the mean of the features across
the available sequences; when only T2Sag is available, the T2Sag features are
simply replicated six times. The increased number of parameters at the bottle-
neck in the Mean Imputation model cannot alone account for the improvement
over the T2Sag baseline. Training a model on a single sequence, replicating the
320 feature channels and passing the concatenated features through a convo-
lution is mathematically equivalent to the T2Sag baseline method, given the
linearity of the convolution operation. This suggests that additional factors are
contributing to the improved performance of Mean Imputation.

3.2 Understanding Mean Imputation

We propose two explanations for the improvement of Mean Imputation over the
T2Sag baseline. First, the approach may improve the quality of the features gen-
erated by the T2Sag encoder. Second, the variability introduced in the latent
features may aid the fusion layer and decoder to learn more robust representa-
tions. The following experiments explore these two potential mechanisms.

Improved Encoder We suggest that Mean Imputation implicitly guides the
feature representations generated by different sequence-specific encoders to be
similar. Consider the case where a given sequence is missing in a single train-
ing iteration and so its features are replaced by the mean across the available
sequences. Now, the convolutions at the bottleneck fusion layer have specific
weights for each of the 1,920 (320 x 6) input channels, and so specific weights as-
sociated to the features of the missing sequence. As the sequence is missing, the
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Table 1. The first four rows are models trained and tested on specific sequence com-
binations. Mean Imputation was trained on all sequences but evaluated with a subset
at inference. Test sets Da, Dp, and D¢ are from distinct cohorts, and blank entries
indicate missing sequence combinations. The best result for each test set is in bold.
MP2RAGE is shortened to MP2 to fit within the table.

Sequences at Inference Lesion-wise F1 Dice Coefficient

Model T2Sag STIR T2* T2Ax T1 MP2 D, D Dc Da Dp Dc
. o o o o o 0.593 0.517 0.583 0.452 0.403 0.469
Specific . ° o o o o 0.558 0477 - 0.418 0.355 —
Sequences o o . o e o© - - 0.593 - - 0445
L (o] L L] (o] o 0.550 - - 0-380 - -
. o o o o o 0.641 0.563 0.606 0.466 0.414 0.493
Mean . . o o o o 0.637 0.570 — 0.470 0.432 —
Imputation . o . o e o - - 0.622 — - 0.518
[ ] [} [ ] L] [} [} 0.650 - - 0-480 - -
[ ] [ ] [ ] L] [} [ ] 0646 - - 0475 - -

input to its associated weights will be the mean of the other available features. If
the features from different sequence encoders followed completely different dis-
tributions, then the weights of the missing sequence would not be well adapted
in this case. This mismatch would lead to poorer predictions and a higher loss,
prompting the weights to be updated through backpropagation to better han-
dle the mean features. Furthermore, the weights of the encoders active in that
iteration might be updated so that the feature distributions they generate are
slightly more similar to the feature distribution of the missing sequence. Over
the course of training, this may provide some regularisation on the encoders and
so may improve the feature learning process.

To validate this hypothesis, we conducted an experiment by training the
Mean Imputation method while freezing the T2Sag encoder, as described in
Sec. 2.4. Table 2 shows that this indeed leads to a drop in lesion-wise F1 from
0.603 to 0.591, suggesting that better T2Sag features play a role in the im-
proved performance. However, the score remains above that of the T2Sag base-
line (F1=0.564), implying that there are other contributing factors. Future re-
search will explore replicating this effect in a single-sequence setting, e.g., by
encouraging consistent features for the same image under various input augmen-
tations, as in some self-supervised methods [3].

The authors of [12] propose a distillation loss to learn better features for less
informative modalities by aligning them with a teacher modality. We hypothesise
that this loss may also regularise the encoder of the teacher modality and, as
such, may therefore achieve a similar effect to the mechanism of learning better
T2Sag features discussed above. However, when applying the distillation loss,
we observe a decrease in lesion-wise F1 from 0.603 to 0.575 and a drop in Dice
from 0.457 to 0.435.
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Table 2. Results using only T2Sag at inference (mean =+ std. dev.). Significance levels
for Wilcoxon test vs. T2Sag Baseline: * 0.1; ** 0.05.

Method Lesion-wise F1 Dice Coefficient
T2Sag Baseline 0.564 £+ 0.031 0.441 £+ 0.011
T2Sag — Feature Augmentation 0.586 + 0.026 ** 0.446 + 0.014 *
Mean Imputation — Frozen Encoder 0.591 + 0.022 ** 0.448 + 0.015 *
Mean Imputation — Distillation Loss 0.575 + 0.017 * 0.435 £ 0.010
Mean Imputation 0.603 + 0.025 **  0.457 + 0.013 **

The lower performance with distillation loss contrasts to the benefit observed
in [12]. This difference may be due to several factors. Firstly, the optimal value
of @ = 0.1 in [12] might not be the ideal value for our setting. However, all tested
values of a € (0, 1] in [12] showed significant improvements over a = 0, i.e., no
distillation. Secondly, that study demonstrated a benefit only when using the
least informative modality for inference, so it is unclear how the loss affected
the strongest modality. Finally, using an L1 loss may not be suitable due to
variations in FOV; for example, T2*Ax does not cover the thoracic region, so
applying the L1 loss to features in this region may yield unexpected results.

Improved Decoder The Frozen Encoder results indicate that some of the ben-
efit of Mean Imputation stems from an improved bottleneck and decoder. This is
likely due to greater diversity of features seen by the fusion layer, enabling more
robust weights to be learned. We explore if this benefit can be recreated with-
out additional sequences, by introducing perturbations to the latent features, as
described in Sec. 2.4. Table 2 shows that applying these perturbations improves
lesion-wise F1 over the T2Sag baseline (0.586 vs. 0.564), similar to training Mean
Imputation with a frozen encoder (0.591). This suggests a similar improvement
to the robustness of the decoder can be achieved with this latent augmentation.

3.3 Comparison to Other Studies

[4] reported a median Dice score of 0.576 for their T2w model, whereas the me-
dian Dice of Mean Imputation using T2Sag for inference was 0.497. The median
lesion-wise F1 for Mean Imputation was 0.667 with lesion-wise sensitivity and
precision of 77% and 69%, respectively, which is a similar precision but lower
than the sensitivity of 90% reported in [4]. However, results for the same method
can vary significantly on different data, as is evident in Table 1. Furthermore,
the T2w data of [4] includes axial and isotropic data along with T2Sag, which
may contribute to better segmentation. Finally, the F1 and Dice scores of Mean
Imputation were similar to those observed in [10] comparing radiologists to an
adjudicated ground truth (F1=0.667, Dice=0.489), and the higher sensitivity of
our method (77% vs. 50%) indicates that this model could be a useful aid.
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4 Conclusion

This study is the first to explore a multi-sequence approach to SC MS lesion
segmentation in MRI. We proposed a pre-processing and modelling pipeline to
address the challenges inherent in multi-sequence SC MRI data. Using multiple
sequences for inference yielded some improvements, albeit modest, over using
T2Sag alone. However, training with multiple sequences in a missing-modality
setting led to a significant improvement, even when using only one sequence for
inference. Our experiments demonstrated that replacing missing features during
training with the mean over available sequences helped to regularise both the
encoder and decoder. Finally, based on our findings, we proposed a method of
applying augmentation to the latent features while training a single-sequence
model, replicating the benefit of variability observed in the multi-sequence set-
ting. Our pipeline, analysis, and experimental results collectively advance the
field of automated MS lesion segmentation in spinal cord MRI.
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