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Abstract. The accurate evaluation of left atrial fibrosis via high-quality
3D Late Gadolinium Enhancement (LGE) MRI is crucial for atrial fib-
rillation management but is hindered by factors like patient movement
and imaging variability. The pursuit of automated LGE MRI quality
assessment is critical for enhancing diagnostic accuracy, standardizing
evaluations, and improving patient outcomes. The deep learning models
aimed at automating this process face significant challenges due to the
scarcity of expert annotations, high computational costs, and the need
to capture subtle diagnostic details in highly variable images. This study
introduces HAMIL-QA, a multiple instance learning (MIL) framework,
designed to overcome these obstacles. HAMIL-QA employs a hierarchi-
cal bag and sub-bag structure that allows for targeted analysis within
sub-bags and aggregates insights at the volume level. This hierarchical
MIL approach reduces reliance on extensive annotations, lessens com-
putational load, and ensures clinically relevant quality predictions by
focusing on diagnostically critical image features. Our experiments show
that HAMIL-QA surpasses existing MIL methods and traditional su-
pervised approaches in accuracy, AUROC, and F1-Score on an LGE
MRI scan dataset, demonstrating its potential as a scalable solution
for LGE MRI quality assessment automation. The code is available at:
https://github.com/arf111/HAMIL-QA

Keywords: Image Quality Assessment · Weak Supervision · Multiple
Instance Learning · Attention-based Models

1 Introduction

Atrial fibrillation (AF), the most prevalent type of cardiac arrhythmia in the
U.S., currently affects between 3 and 5 million individuals [3]. Projections suggest
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this number could surge to over 12 million by 2030 [3]. Research has established
a significant connection between atrial fibrosis and the onset and recurrence
of AF post-treatment [4,10]. Catheter ablation, a widely adopted approach for
treating AF, focuses on eradicating fibrotic tissues in the heart responsible for
erratic electrical impulses by forming precise lesions or scars in these areas.
This underscores the importance of accurately measuring fibrosis to effectively
steer the ablation process. Despite its popularity, catheter ablation’s efficacy is
limited, with a recurrence rate of AF exceeding 40% within 18 months post-
procedure [15]. This high recurrence rate highlights the critical need to address
the limitations of current AF treatments.

Late Gadolinium Enhancement (LGE) MRI is widely utilized to quantify my-
ocardial fibrosis and scarring. It is instrumental in assessing AF patients before
catheter ablation, providing detailed insights into the atrial structure and fibrosis
distribution. The geometry and fibrosis patterns identified through LGE MRI
are essential for planning ablation procedures and generating patient-specific
models [11,2]. However, the quality of LGE MRI images can vary significantly,
influenced by aspects such as noise, patient mobility, inconsistent breathing pat-
terns, and suboptimal tuning of pulse sequence parameters; which can impact
diagnostic precision [7,6,13].

Automating the quality assessment (QA) of LGE MRI images is critically im-
portant for clinical practices, offering to improve diagnostic accuracy, increase
procedural efficiency, standardize assessments, and enhance patient outcomes.
By ensuring high-quality scans for fibrosis quantification, this automation di-
rectly contributes to refining ablation strategies and guiding treatments more
effectively. However, manual evaluation of image quality is labor-intensive and
susceptible to errors, making it unsuitable for widespread application and chal-
lenging its integration into clinical practice. Automating QA can be approached
naively by training a deep network that would predict a quality score from a 3D
LGE volume. However, this straightforward approach faces several challenges.
Firstly, the constraint of limited annotations, predominantly expert-driven, sig-
nificantly hinders the compilation of large, annotated datasets essential for such
conventional deep learning paradigms. Secondly, the computational and memory
requirements necessary for processing entire 3D volumes for image-level predic-
tion pose a significant scalability challenge. Moreover, the variability in LGE
MRI images due to patient anatomy differences and motion artifacts complicates
the development of a generalizable model. Lastly, ensuring that the network’s
predictions are clinically relevant is a challenge, as the model must discern subtle
quality nuances impacting diagnostic outcomes.

The quality assessment of LGE MRI scans inherently requires a weakly su-
pervised learning approach, as typically only image-level labels are available.
Multiple Instance Learning (MIL), by design, is well-suited to address this prob-
lem. MIL conceptualizes each 3D volume as a collection of instances (or patches),
relying solely on the volume-level class label. The primary objective is to train a
model capable of predicting the label for a group of instances, or “bag”. In the
context of our work, this entails the evaluation of image quality for fibrosis de-
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tection in LGE MRI scans. Each scan, considered as a bag, comprises numerous
instances, represented by hundreds of patches extracted from the scan. A bag
is classified as positive if it contains at least one instance of diagnostic fibrotic
tissue; otherwise, it is deemed a non-diagnostic scan. The choice of MIL as the
foundational framework is justified by the nature of LGE MRI images, which
does not guarantee the presence of diagnostic fibrotic tissue in every instance
within a bag. Moreover, MIL optimizes computational efficiency by processing
image patches rather than volumes and learns to focus on the most informa-
tive patches, thus reducing the overall processing load. This targeted approach
aids in constructing models that are both generalizable and robust, capable of
learning effectively from a limited number of annotated volumes in contrast to
training networks that estimate volume-level labels from the full 3D volume.
Furthermore, the MIL framework identifies the most diagnostic instances within
a volume, aligning the learning process more closely with clinical relevance.

In this paper, we introduce HAMIL-QA, an MIL approach inspired by the
cognitive processes employed by radiologists when assessing the diagnostic qual-
ity of LGE MRI images for the quantification of fibrosis. Although these pro-
cesses may vary among radiologists, we followed the approach used by the radi-
ologists who scored the scans in our dataset. This approach ingeniously models
the radiologist’s mental strategy of evaluating scans, employing a hierarchical
structure of bags and sub-bags that mimics the expert’s method of systemati-
cally sweeping through the scan, slice by slice, to determine the overall quality
label. In this framework, MIL is applied first at the sub-bag level, focusing on
slices within each volume, and then at a higher bag level, integrating features
learned from the sub-bag level to determine the final quality score for the entire
volume. This tiered structure allows for nuanced analysis and interpretation of
image data, enhancing the model’s effectiveness and efficiency. Specifically, at
the sub-bag level, the model learns to identify the most informative instances.
This selective attention increases the model’s ability to handle the inherent vari-
ability in LGE MRI images, as it learns to recognize and adapt to patterns
across different patient anatomies and artifact influences within the sub-bags
before integrating these insights at the bag level. Experimental findings reveal
that HAMIL-QA surpasses both traditional fully supervised models and current
MIL methodologies in achieving higher accuracy, AUROC, and F1-Score metrics
on a limited labeled dataset of LGE MRI scans.

2 Related Works

In MRI image quality control, advancements have been made to enhance the
diagnostic accuracy and consistency of MRI scans. For instance, Wang et al.
proposed deep generative model to enhance the quality control process of cardiac
MRI segmentation, demonstrating its effectiveness across various datasets [16].
Dormont et al. proposed a framework for the automatic quality control of 3D
brain T1-weighted MRI for a large clinical data warehouse [1]. K. Sultan et al.
proposed a two-stage deep learning model to automate the quality assessment
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of LGE MRI images, crucial for evaluating left atrial fibrosis in patients with
atrial fibrillation [14].

Within medical image analysis, MIL has emerged as a potent framework,
given its efficacy for classification tasks in histopathology. Quellec et al. ex-
plored MIL’s applicability across various medical image and video analysis tasks,
demonstrating its potential to circumvent the need for detailed pixel-level an-
notations [12]. One notable contribution is from Ilse et al., who proposed an
attention-based deep MIL, enhancing interpretability and performance in med-
ical image analysis by focusing on relevant instances within a bag [8]. Further-
more, Shao et al. introduced a Dual-stream MIL Network that leverages whole
slide image classification integrated with self-supervised contrastive learning,
providing a nuanced approach to learning from unannotated regions within med-
ical images effectively [9]. Additionally, the DTFD-MIL approach by Li et al.
emphasizes a double-tier feature distillation within a MIL framework, address-
ing the complexities of histopathology image classification with refined feature
representation and enhanced learning efficacy [17].

To the best of our knowledge, the confluence of MIL methodologies in LGE-
MRI QA remains uninvestigated. Notably, the comprehensive review by Fatima
et al. on MIL underscores its versatility across a spectrum of applications, from
image retrieval to disease diagnosis, reinforcing the value of integrating such
methodologies within LGE-MRI QA processes [5].

3 Method

Consider an LGE MRI volume V ∈ RR×C×S , where R, C, and S represent the
number of rows, columns, and slices of the volume, respectively. The diagnostic
quality of the LGE MRI volume is defined as the ground truth label Y , which
categorizes the scan as either diagnostic or non-diagnostic. For notational sim-
plicity and without loss of generality, we assume each volume comprises an equal
number of M sub-bags, represented as X = {X1,X2, . . . ,XM}, with each sub-bag
Xm corresponding to an axial slice. A sub-bag inherits its label from its parent
bag’s label YGT . It is also assumed that each sub-bag contains a consistent num-
ber of K instances, denoted by Xm = {x1

m,x2
m, . . . ,xK

m}, where xk
m ∈ Rr×c is

a 2D image patch of r−rows and c-columns. We randomly sample 2D patches
from each axial slice to construct a sub-bag, reflecting the inherent variability
within the scan. It is important to note that the proposed approach does not
inherently require that each volume has the same number of sub-bags or that
each sub-bag contains an identical number of instances, allowing for flexibility
in handling diverse LGE MRI data structures.

We apply a transformation function ϕ(.) on each instance (i.e., patch) xk
m

to obtain the instances embedding (i.e., feature descriptors) for each sub-bag,
denoted as Hm = {h1

m,h2
m, . . . ,hK

m}, where hk
m = ϕ(xk

m) ∈ RL×1. We use
ResNet10 to parameterize the transformation function ϕ(.). Then, we take a
dual-stream approach on the features to perform both embedding-based MIL
and slice feature distillation in our sub-bag module. In the first stream which is
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Fig. 1: Overview of our proposed model. For illustrative purposes, we select M
axial slices (with 4 depicted as an example) at random from an LGE MRI scan,
treating each slice as an individual sub-bag. We then extract random cropped
patches from each of these slices. These sub-bags are initially processed by the
sub-bag module. Subsequently, the output from sub-bag module is used to gen-
erate feature vectors, which are then input into the bag module. It is important
to note that the ground truth label for the bags remains consistent across both
sub-bag module and bag module during the training phase.

the embedding-based MIL as denoted in Figure 1, we get the slice or sub-bag
level prediction label, ŷm = ρsub-bag(Hm). This involves computing an attention-
weighted sum of features:

ŷm = ρsub-bag(Hm) = σ

(
wm

K∑
k=1

akmhk
m

)
, (1)

where akm denotes the attention weight for the k-th instance in the m−th sub-
bag Hm, wm ∈ RL×1 denotes a weight vector for binary classification, and σ
represents a sigmoid activation mapping the aggregated signal to a prediction.
Similar to [8], we calculate the attention as:

akm =
exp

{
w⊤ tanh(Vhk⊤

m )
}

∑K
j=1 exp

{
w⊤ tanh(Vhj⊤

m )
} (2)

Consider a dataset ofN−volumes. The sub-bag module loss is then calculated
as:

Lsub-bag = − 1

MN

N∑
n=1

M∑
m=1

[Y m
n log(ymn ) + (1− Y m

n ) log(1− ymn )] (3)
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On the other stream, slice feature distillation, we get the distilled features
from transformation function ϕ(.) calculated as:

h̄ =
1

M

M∑
n=1

hn ∈ RL (4)

In the subsequent bag module, we use an embedding based MIL from the
distilled features h̄ to obtain the final LGE MRI scan level label, ŷ by following
the same procedure as equation 1 and 2. The bag module loss is calculated as:

Lbag = − 1

N

N∑
n=1

[Yn log(ŷn) + (1− Yn) log(1− ŷn)] (5)

Overall optimization is then:

θ∗ = arg min
θ1,θ2

(Lsub-bag + Lbag) (6)

where θ1 and θ2 are the parameters of Sub-bag module and Bag module,
respectively.

4 Results

4.1 Dataset

In this study, we employed a dataset comprising 424 LGE MRI scans, each la-
beled for the purpose of Quality Assessment (QA) and has Left Atrium segmen-
tations. Following the acquisition protocol detailed in [10], scans were obtained
with a fine resolution of 1.25 × 1.25 × 2.5mm3, captured roughly 15 minutes
post the administration of gadolinium using a 3D ECG-gated and respiratory-
navigated gradient echo inversion recovery sequence. Expert reviewers rated
these scans on a scale from 1 to 5. These 424 scans have a class imbalance
problem because most scans are in the 2 to 4 range. To address this problem,
we have transformed the scores into two different labels: diagnostic and non-
diagnostic. Scans with a score of ≥ 3 are designated as diagnostic, denoted 1,
while less than 3 is non-diagnostic and denoted as 0.

4.2 Data Preprocessing

Our dataset was splitted into training and testing sets following an 80:20 split.
Subsequently, the training set was further partitioned into a secondary training
set and a validation set, adhering to the same 80:20 ratio. For the proposed
method, we processed each scan as a series of 2D axial slices, selectively utiliz-
ing those representing the Left Atrium based on available segmentation data. In
contrast with other methodologies, as detailed in Table 1, we extracted a sub-
volume inclusive of the Left Atrium from the 3D scans based on the available
segmentations data. We expand this subvolume by 30 units along the axial plane
only. Prior to network input, all data underwent a normalization process.
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4.3 Experiments

During training, the model is validated using AUROC across all volumes. The
performance is measured by Accuracy, AUROC, and F1-Score. The details of
the training are given below:
We consider 3 models for our comparison. Fully supervised, Attention based
MIL [8], and DTFD-MIL framework [17]. For the fully supervised model, we
only consider a 3D ResNet10 model. The 3D images are passed through the
network to predict binary score, i.e., non-diagnostic and diagnostic. For ABMIL
and DTFD-MIL models, we randomly pick 3D patches from the 3D images. All
of the networks were trained for 50 epochs using the Adam optimizer with a
learning rate of η = 0.0001 and with an early stopping criteria of patience 8.
A cosine annealing learning rate scheduler was used to reduce the learning rate
throughout training. The results are shown in Table 1.

True Label: 1.0 Pred Label: 1.0

True Label: 0.0 Pred Label: 0.0

Slice Picked Attention Map 
in Slice

Fig. 2: Heatmap of 2 scans by original LGE MRI image and by attention map of
our model, respectively. In the second column, a highlighted red square marks
the patch receiving the highest attention weight, with an enlarged view provided
for clarity. Additionally, a red arrow on the original MRI images indicates the
left atrium’s position.



8 K. Sultan et al.

Method Acc AUROC F1

Fully Supervised 0.545± 0.062 0.544± 0.059 0.419± 0.210
Classic AB-MIL [8] 0.643± 0.028 0.647± 0.013 0.433± 0.093
DTFD-MIL (AFS) [17] 0.604± 0.075 0.637± 0.065 0.242± 0.242
HAMIL-QA 0.682± 0.030 0.700± 0.009 0.596± 0.084

Table 1: Results on our LGE MRI test set. For DTFD-MIL and our method
(HAMIL-QA). the number of sub-bags is 6 and number of instances are 60.
These numbers were determined by hyperparameter tuning. We further show
the ablation experiments on these parameters in supplementary material. All of
the experiments are run 3 times. The best ones are in bold.

For experiments, we considered different number of instances and pseudo bags
to find the optimal performance. We also reported that our model is 700x and
89x more efficient in computation than fully supervised and two other models,
respectively, since our model processes 2D image patches instead of full volume
or 3D patches. The experiments are shown in the supplementary material.

To delve deeper into the efficacy of our approach, we visualized the model’s
attention mechanism by producing attention score heatmaps for two scans, as
depicted in Figure 2. The visualizations reveal that our model appropriately
allocates higher attention to the walls of the left atrium, which aligns with the
regions commonly associated with a higher probability of fibrosis, indicating the
model’s capability to focus on clinically significant areas.

5 Conclusion

In conclusion, our study shows the development of a dual-module Multiple In-
stance Learning (MIL) framework is specifically designed to enhance the diagnos-
tic quality assessment of Late Gadolinium Enhancement (LGE) Magnetic Reso-
nance Imaging (MRI) scans. The introduction of a sub-bag concept and a double
module mechanism effectively addresses the prevalent challenge of limited an-
notated datasets, significantly improving the model’s performance metrics. The
findings from this study demonstrate the framework’s superior performance over
traditional fully supervised and existing MIL methodologies. In summary, our
study offers important contributions towards evaluating the quality of the left
atrium in LGE MRI images, particularly when faced with a scarcity of labeled
data.
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