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Abstract. Cell nuclei segmentation is crucial in digital pathology for
various diagnoses and treatments which are prominently performed using
semantic segmentation that focus on scalable receptive field and multi-
scale information. In such segmentation tasks, U-Net based task-specific
encoders excel in capturing fine-grained information but fall short inte-
grating high-level global context. Conversely, foundation models inher-
ently grasp coarse-level features but are not as proficient as task-specific
models to provide fine-grained details. To this end, we propose utiliz-
ing the foundation model to guide the task-specific supervised learning
by dynamically combining their global and local latent representations,
via our proposed X-Gated Fusion Block, which uses Gated squeeze and
excitation block followed by Cross-attention to dynamically fuse latent
representations. Through our experiments across datasets and visual-
ization analysis, we demonstrate that the integration of task-specific
knowledge with general insights from foundational models can drasti-
cally increase performance, even outperforming domain-specific seman-
tic segmentation models to achieve state-of-the-art results by increasing
the Dice score and mIoU by approximately 12% and 17.22% on Cry-
oNuSeg, 15.55% and 16.77% on NuInsSeg, and 9% on both metrics for
the CoNIC dataset. Our code will be released at https://cvpr-kit.github.
io/SAM-Guided-Enhanced-Nuclei-Segmentation/.

Keywords: Nuclei Segmentation · Histopathology · Digital Pathol-
ogy.

1 Introduction

In the domain of digital pathology, accurate segmentation of nuclei in histopatho-
logical images is critical for the research of cancer diagnosis [13]. Nuclei seg-
mentation facilitates detailed examination of cellular behaviors, including the
analysis of cell cycles and the investigation of mutations in proteins linked to
cancer [9]. The precision of segmentation directly impacts the analysis of tissue
biopsies, which are conducted millions of times each year and represent the most
reliable method for diagnosing cancer [11]. Thus, analyzing the morphology and
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spatial distribution of nuclei is essential for identifying cell types, assessing tissue
structure, and determining the cancer category, which are crucial for diagnos-
ing, evaluating severity, and planning treatment [26]. While traditional manual
or semi-automated methods largely depended on the pathologist’s expertise, in
recent times, there have been continuous research and advancement in fully au-
tomated segmentation solutions offered by deep learning [14]. U-Net architecture
[21] represents a benchmark in medical image segmentation tasks, where it uti-
lizes symmetrical encoder-decoder based architecture for precise localization and
skip connections for retaining contextual information. Numerous variations and
improvements to the U-Net structures [29,19,20,6,4] were released that focused
either on enhancing different aspects of the network or on adapting features
from the datasets efficiently. Such approaches made U-Net being regarded as
a task-specific model that performed well on a particular given set of task or
datasets. Task-specific models are adept at capturing fine-grained details cru-
cial for accurate cell segmentation but often require extensive training data and
pre-processing, such as stain normalization, to handle the variability in staining
and morphology characteristic of histopathological images. Furthermore, there
is a need to comprehend broader context of tissue structures which is essential
in understanding cell structure and formation of complex tissue architectures
[22]. To overcome these challenges, there has been various research in leverag-
ing the capabilities of foundational models, which are designed to understand
and interpret a wide range of visual contexts [5,2,7]. Unlike task-specific models,
foundation models such as the Segment Anything Model (SAM) [12] are trained
on vast and varied datasets, enabling them to develop a more holistic under-
standing of images. While these models excel in identifying global features and
contextual relationships, their application to histopathological images is limited
by their inability to generate the detailed and fine segmentation necessary for
accurate pathological analysis [22].

To address this gap, we propose leveraging the precision of U-Net architecture
for local feature extraction and detailed segmentation while incorporating SAM
for guiding this segmentation by providing broad, contextual insights to enhance
the model’s ability to understand and interpret complex, varied backgrounds
and structures. In this paper, we propose - (1) enhancement to U-Net3+ [10] via
adaptive feature selection which we call - eU-Net3+, and (2) X-Gated Fusion
Block (X-GFB) to dynamically fuse the global and local latent representations.
Our experimentation result shows an increase in performance of about 12% and
17.22% in CryoNuseg dataset [18]; about 15.55% and 16.77% in NuInsSeg dataset
[17]; and about 9% improvements across dice scores and mIoUs using CoNIC
dataset [8] compared to the base U-Net3+.

2 Methods

The overall architectural pipeline is shown in Fig. 1. Our proposed methodology
first enhances U-Net3+ by adaptive feature selection for task-specific segmen-
tation which we call eU-Net3+. Then we use frozen SAM encoder to guide the
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segmentation process by providing global contextual features into the eU-Net3+.
Both the local and global representations are then dynamically fused together
using the proposed X-GFB, that first uses GLU in gated squeeze and excitation
block [3] and then uses cross-attention block for retaining both local and global
awareness.

Fig. 1. The overall architecture of SAM guided task-specific segmentation.

2.1 eU-Net3+ as Task-Specific Model

The selection for the task-specific model necessitates the model to have the abil-
ity to capture both textural and structural information in great details from the
image. The encoder-decoder based U-Net framework is a highly effective struc-
ture in the medical image segmentation models. It facilitates detailed feature
extraction and critical integration for precise segmentation tasks [19]. Among
the U-Net variants, U-Net3+ contains full-scale connections and deep supervi-
sions that is aimed to capture multi-scale features more effectively. This approach
enables the effective fusion of both high-level structural and low-level textural
details from across the network and thus improving segmentation performance.
This methodology ensures a comprehensive fusion of features, addressing the se-
mantic gap between different network layers and enhancing the model’s ability
to produce refined semantic information [10].

Our implementation enhances U-Net3+ through incorporation of adaptive
feature selection. Features can vary across different regions in a histopatholog-
ical image. Certain regions might be densely-packed than others. Traditional
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activation functions, such as ReLU [1], uniformly transform all features without
discrimination, potentially overlooking the nuanced differences that are critical
for accurate segmentation. To address this, we incorporate Gated Linear Units
(GLUs) [23] into our U-Net3+ model for enabling selective feature activation
based on their relevance to the segmentation task. GLUs operate by splitting
the input into two streams: one undergoing a linear transformation and the other
processed through a sigmoid activation function. The sigmoid’s output effectively
acts as a gate, modulating the flow of information from the linear stream based
on the feature’s importance. This is formulated as:

GLU(x) = sigmoid(Wa · x + ba) ⊙ (Wl · x + bl) (1)

, where ⊙ denotes the element wise multiplication, Wa, ba denotes weights and
biases for the gated mechanism, and Wl, bl denotes the weights and biases for
the linear transformation. This adaptive mechanism ensures that the eU-Net3+
model not only captures a broad spectrum of features from multi-scale inputs
but also fine-tunes its focus towards the most diagnostically significant features.

2.2 SAM Encoder for Global Context

Segment Anything Model (SAM) is a promptable visual foundational model
trained on one billion masks from 11M images for image segmentation [12]. There
have been several research tasks that have used the zero-shot capabilities of SAM
but struggled to produce high performing results (as can be seen in Fig. 2). This
is due to the domain gap in the training images as the images used to train SAM
were natural images which are very far from medical or histopathological images
[16]. Even then, due its large training and generalizing capabilities, it can retain
high-order global contextual information. We leverage this capability of SAM to
guide our task-specific model towards increasing the segmentation performance.
Upon comparing different model checkpoints from Fig. 2, it becomes evident
that the the Huge model checkpoints (636M parameters) provides much better
representation of the input image compared to the base model checkpoint (91M
parameters). But this results in loss of ambiguity in certain regions as pointed out
in label (f), (g) and (h) of Fig. 2. In our experiments, we wanted to provide more
ambiguous global representations to eU-Net3+, so that the task specific model
can decide on nuclei or non-nuclei regions as it has more fine-tuned understanding
of feature characteristics. So, we chose the base model checkpoint with 91M
parameters. The image encoding visualizations shown in Fig. 2 are plotted after
performing PCA, where three most important components are picked from all
the channels of the encoding and are treated as color channels [28].

2.3 X-Gated Fusion Block

Simple aggregation of feature embeddings from different encoders does not inher-
ently guarantee enhanced performance due to potential conflicts or redundancies
between the features [25]. We also confirm this visually in Fig. 3. To address
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Fig. 2. (a) depicts a sample nuclei image and (e) depicts ground truth overlayed image.
(b), (c), and (d) are the segmentation results predicted by SAM and (f), (g) and
(h) visualization of PCA [28] for SAM encodings using SAM with Base, Large, and
Huge model checkpoints, respectively. While the Huge model checkpoint yields a more
distinct representation, it overlooks several ambiguous regions.

this issue, we design a dynamic fusion approach that can effectively integrate
global context into the segmentation process and thereby improve the overall ef-
ficacy of the model. Inspired from the implementation of [3], where the authors
used pose feature maps to guide the training of appearance feature maps for
person re-identification, we use a similar Gated Squeeze and Excitation block
followed by a Cross-Attention block to fuse the latent representations of SAM
and eU-Net3+.

The squeeze part is performed using adaptive average pooling on the con-
catenated feature maps. This compresses the spatial dimensions and focuses on
the global information contained within each channel. The excitation phase is
then initiated by the convolution operation that expands the number of chan-
nels while preparing them for the gating mechanism implemented by the GLU,
where it selectively allows information through the network. This ensures that
the important features are dynamically selected forward. This selective gating
mechanism ensures that only the most relevant features for segmentation are
emphasized. The final convolution, followed by a sigmoid function, serves to re-
calibrate the channel-wise feature responses by learning nonlinear interactions
between channels.

To ensure that the broader image context from SAM does not over-emphasis
the local details of eU-Net3+, we implement a cross-attention block. The cross-
attention mechanism operates on the flattened and permuted gated features,
treating them as queries, keys, and values in the attention operation. This al-
lows the model to amplify important features, suppress irrelevant information,
and enhance contextual awareness. Fig. 3 provides a series of visualizations
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that showcase the progressive transformation of image data as it passes through
various layers of the eU-Net3+ architecture. By applying PCA to the high-
dimensional feature space and projecting it down to the three principal compo-
nents, we gain a visual insight of how the network distills information. Starting
from (a) and moving through to (e), there is a noticeable transition from detailed,
high-resolution features towards more abstract, aggregated representations as we
move from shallower to deeper layers of the network. Although, representation of
fifth layer (e) might be less recognizable in terms of original tissue morphology;
however, they retain most essential characteristics. The subsequent image (g),
which visualizes the concatenated features outputs of both SAM and eU-Net3+
encoder, can be observed to have similar representation as (e) with not much
change, indicating that simple feature aggregation may not substantively effec-
tive. In contrast, (h) presents the transformed feature space after applying the
proposed X-GFB. This visualization distinctly shows the integration of contex-
tual information from SAM with the localized features of U-Net3+ using X-GFB
to be more detailed compared to simple concatenation.

Fig. 3. Analysis of features after different layers and process in the network. (a) to
(e) are visualizations of PCA that correspond to encodings from layer 1 to 5 of the
eU-Net3+ encoder. (f) represents the SAM encoding, (g) showcase the feature space
post-concatenation of SAM and eU-Net3+ encoder and (h) visualizes the feature space
after applying X-GFB.

3 Experiments and Results

This section details the evaluation of the SAM Guided eU-Net3+ model across
three histopathological datasets: CryoNuSeg, NuInsSeg, and CoNIC, chosen for
their diversity in staining methods and tissue complexity. CryoNuSeg includes
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a collection of 30 images, NuInsSeg contains 665 image patches, and CoNIC
contains 4981 images in the dataset.

Our experiments are implemented using the PyTorch framework equipped
with RTX A6000 graphics card. To standardize input, all images are resized to a
uniform resolution of 256x256 pixels. The training process spans 50 epochs, with
an initial learning rate set to 1 × 10−4 and batch size of 16. We use Adam opti-
mization along with drop out of 0.3. For the loss function, we use a combination
of weighted Dice [24] and focal loss [15] with equal weights, aiming to balance
the training focus between prevalent and rare segmentation targets. Moreover,
we use standard photo-metric and geometric augmentations to generate corre-
sponding images for training the model. The models mentioned in Table 1 are
trained and evaluated separately. We perform qualitative analysis as shown in
Fig. 4, to assess the segmentation quality of with and without SAM guidance.
eU-Net3+ is the enhanced U-Net3+ model with no SAM guidance seems to suffer
in segmentation performance owing to the lack of global structural context.

Fig. 4. Qualitative evaluation of segmentation performance of sample images for with
and without SAM-guidance for eU-Net3+. The image in the top row is from Cry-
oNuSeg, middle row is from NuInsSeg and bottom row is from CoNIC.

Fig. 4 shows the qualitative assessment our model. The circles areas in the
image highlights some of the regions where inclusion of SAM in eU-Net3+ per-
formed better than using only the task-specific model. The SAM guided predic-
tions generally show more precise and accurate segmentation, further confirming
the effects of of the proposal method of adding global context from SAM to im-
prove the segmentation accuracy of the task-specific model.
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Furthermore, table 1 summarizes the performance metrics quantitatively.
The eU-Net3+ showed improvements with increases in dice scores of approxi-
mately 11.64%, 15.55%, and 8.77% for the CryoNuSeg, NuInsSeg, and CoNIC
datasets, respectively. The SAM Guided eU-Net3+ model further increased the
performance demonstrating superior segmentation over existing benchmarks. For
CryoNuSeg, the model achieved a Dice score of 0.8942 and an mIoU of 0.8164;
Dice score of 0.9399 and an mIoU of 0.8938 in NuInsSeg and Dice score of 0.9351
and an mIoU of 0.8869 on CoNIC across datasets, outperforming state-of-the-art
task-specific models.

Table 1. Model Performance Across Different Datasets

Dataset Model Dice (F1-Score) mIoU
CryoNuSeg U-Net 0.7371 0.610

DDU-Net [27] 0.8143 0.6822
U-Net3+ 0.778 0.6432
eU-Net3+ (w/o SAM) (proposed) 0.8401 0.7644
Guided eU-Net3+ (w/ SAM) (proposed) 0.8942 0.8164

NuInsSeg U-Net 0.797 0.6781
DDU-Net 0.7154 0.6133
U-Net3+ 0.7844 0.7261
eU-Net3+ (w/o SAM) (proposed) 0.8307 0.8163
Guided eU-Net3+ (w/ SAM) (proposed) 0.9399 0.8938

CoNIC U-Net 0.7353 0.6214
DDU-Net 0.827 0.7347
U-Net3+ 0.8474 0.7992
eU-Net3+ (w/o SAM) (proposed) 0.8966 0.8539
Guided eU-Net3+ (w/ SAM) (proposed) 0.9351 0.8869

4 Conclusion

In this study, we introduced a novel segmentation framework where we used
SAM to provide the broad global representational information to the detailed
local feature extraction task-specific enhanced U-Net3+ model using X-GFB.
Consequently, our model adeptly navigates the challenges inherent in histopatho-
logical image analysis, such as stain variability and complex tissue morphology.
Our findings indicate that dynamically integrating global and local representa-
tions not only yields substantial improvements but also sets new benchmarks,
outperforming existing state-of-the-art models in the field. Potential avenues for
further enhancements include - exploring the integration of SAM with the hidden
layers of U-Net3+ to provide additional structural context into the encoder and
comparing the model performance against other SAM-adapted models. These
areas, poised for future investigation, hold promise for advancing our under-
standing and capabilities in digital pathology and cancer diagnosis.
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