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Abstract. Supervised methods for 3D anatomy segmentation demon-
strate superior performance but are often limited by the availability of
annotated data. This limitation has led to a growing interest in self-
supervised approaches in tandem with the abundance of available unan-
notated data. Slice propagation has emerged as a self-supervised ap-
proach that leverages slice registration as a self-supervised task to achieve
full anatomy segmentation with minimal supervision. This approach sig-
nificantly reduces the need for domain expertise, time, and the cost as-
sociated with building fully annotated datasets required for training seg-
mentation networks. However, this shift toward reduced supervision via
deterministic networks raises concerns about the trustworthiness and re-
liability of predictions, especially when compared with more accurate
supervised approaches. To address this concern, we propose integrating
calibrated uncertainty quantification (UQ) into slice propagation meth-
ods, which would provide insights into the model’s predictive reliability
and confidence levels. Incorporating uncertainty measures enhances user
confidence in self-supervised approaches, thereby improving their prac-
tical applicability. We conducted experiments on three datasets for 3D
abdominal segmentation using five UQ methods. The results illustrate
that incorporating UQ improves not only model trustworthiness but also
segmentation accuracy. Furthermore, our analysis reveals various failure
modes of slice propagation methods that might not be immediately ap-
parent to end-users. This study opens up new research avenues to im-
prove the accuracy and trustworthiness of slice propagation methods.
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1 Introduction

Achieving precise segmentation of 3D anatomy in MRI and CT volumes is crit-
ical for downstream tasks, including disease monitoring [3], diagnostic processes
[12], and treatment planning [I7]. Supervised deep learning models are state of
the art for 3D segmentation of various anatomies and tumors [2I]. However,
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achieving high performance levels requires an enormous quantity of annotated
image volumes [I9]. Annotating these 3D volumes, which falls outside the scope
of standard clinical routines, is both costly and time-intensive, as it necessi-
tates the specialized knowledge of several radiologists, whose expertise is often
in short supply. Therefore, it is crucial to develop techniques for 3D anatomy
segmentation that can operate effectively with limited or no annotations.

Several machine-learning approaches have been developed for 3D anatomy
segmentation with limited annotations. Semi-supervised methods (e.g., [6125])
use a combination of fully annotated volumes as well as un-annotated volumes
to train deep learning models. These methods often utilize student-teacher frame-
works, enhancing model performance through mechanisms such as consistency
loss or mutual information maximization. Techniques such as pseudo-labeling
and sample filtering are also used to augment the annotated data pool to en-
hance the trained model [427]. However, these methods still require high-quality,
fully or partially annotated volumes for effective training and validation, limiting
their utility in situations where annotated data are scarce or entirely unavailable.

Slice propagation methods (e.g., [5I30]) have evolved to offer a self-supervised
approach for anatomy segmentation, eliminating the need for any annotated vol-
umes for model training. Such methods use slice registration as a self-supervised
task to establish correspondences between adjacent slices. During inference, only
one annotated slice in the given volume is required to obtain a segmentation
of the entire 3D anatomy. These methods reduce the burden on specialists of
annotating entire volumes for training image segmentation networks. With a
significant amount of available unannotated datasets, training networks on self-
supervised slice-to-slice registration also significantly increases the training data,
enhancing the model’s ability to generalize. Moreover, these networks are trained
to recognize pixel-wise correspondences of key low-level geometric features across
various anatomies. As a result, they can adapt to a diverse range of anatomies,
making them effective for inference on previously unseen anatomical structures.
However, the performance of these self-supervised models is not yet comparable
to that of supervised or semi-supervised methods trained on comparable quanti-
ties of data. Such a performance gap raises concerns about the accuracy, quality,
and trustworthiness of model predictions. Given that deep learning models al-
ways produce outputs, irrespective of the confidence level of the prediction, it
becomes crucial to quantify and analyze the reliability and accuracy of these self-
supervised methods. This scrutiny is particularly important in clinical scenarios
where false negatives and false positives can critically impact patient outcomes.

Uncertainty quantification (UQ) is a key technique that helps identify when
model predictions are reliable for clinical use or when extra caution is needed
[14]. High predicted UQ values could flag potential incorrect segmented regions,
guiding user interactions and refinement [22]. UQ analysis can also help iden-
tify failure modes of different methodologies that are not immediately apparent
to the end-user. Uncertainty in deep learning predictions can be attributed to
(a) the inherent uncertainty in the input data (aleatoric uncertainty) and (b)
the uncertainty in model parameters due to limited training data (epistemic un-
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certainty) [16]. Aleatoric uncertainty can be directly modeled as a function of
the input data by producing probabilistic outputs. Epistemic uncertainty, on the
other hand, is more difficult to quantify as it involves learning a distribution over
model weights. However, quantifying epistemic uncertainty is crucial as it high-
lights the model’s knowledge gaps and is directly correlated with the availability
and diversity of the training data. Given that this paper focuses on weak/sparse
supervision (through single-slice annotation), it is more relevant to quantify the
limitations of the model’s knowledge base using epistemic uncertainty quantifi-
cation (UQ). This is clinically significant for conveying the trustworthiness of the
results under limited supervision. This paper makes the following contributions
to the broader goal of establishing safe and trustworthy deep-learning models
for medical applications:

— The integration of epistemic UQ in self-supervised slice propagation meth-
ods, Sli2Vol [30] and Vol2Flow [5], for analyzing the reliability and inter-
pretability of anatomy segmentation.

— A comprehensive benchmark of five state-of-the-art methods for epistemic
UQ on three datasets. Github Link: |SlicePropUQ Github Repo.

2 Uncertainty in Slice Propagation

This section outlines the slice propagation techniques we consider in this paper
and our adaptations to incorporate different UQ methods.

2.1 Slice Propagation Methods

Sli2Vol [30] and Vol2Flow [5] are the state-of-the-art approaches for 3D volume
segmentation using a single slice annotation. Let I € R#*WX*D denote a 3D
image, where H, W and D are the height, width, and depth of the volume.
These methods provide a segmentation of the entire volume propagating one
manually annotated slice S; € RE*W where i € {1,..., D} to the entire 3D
volume by learning robust pixel-wise correspondences between adjacent slices
in the volume via adjacency matrices. For example, given two adjacent slices,
S; and S;;1, the models predict an affinity matrix A;y; ;. This matrix is then
used to transform S; to acquire an estimate of slice (i + 1), denoted Si“. The
difference between the estimated slice, Si+1, and the original slice, S;41, is then
used for model training. The following sections outline the method differences.
Sli2Vol [30]: In Sli2Vol training, a pair of adjacent slices are first sam-
pled from a training volume. An edge profile generator is applied to the slices
to extract edge features, followed by a convolutional neural network. An affin-
ity matrix is then computed to capture the feature similarity between the two
slices. The model is trained using a self-supervised mean square error (MSE)
loss between the original slice and the slice reconstructed via the affinity matrix.
During inference, the affinity matrices generated by the trained model are used
to propagate the mask of the annotated slice throughout the volume iteratively.
A verification module is also used to correct the propagated masks at each step,
minimizing error accumulation and improving segmentation accuracy.
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Vol2Flow [5]: Whereas Sli2Vol utilizes a 2D CNN for slice-by-slice trans-
formation, Vol2Flow employs a 3D registration network to apply a sequence
of transformations across the entire volume, enabling dense segmentation mask
generation for each test volume. Vol2Flow’s architecture is inspired by 3D-UNet
networks, producing two sets of displacement deformation fields (DDFs) for for-
ward and backward information propagation between adjacent slices. The learn-
ing process entails generating neighboring slices around each source slice using
the DDFs and minimizing a boundary-preserving loss function that combines a
structural similarity index and an edge-preserving loss. For mask propagation,
Vol2Flow applies sequential transformations to generate pseudo labels for slices,
introducing a refinement function to correct errors. The refinement method em-
ploys a non-linear classifier, specifically an SVM with an RBF kernel, to improve
the classification of pixels during mask propagation.

2.2 Epistemic Uncertainty Quantification

Quantification of epistemic uncertainty in deep learning models is challenging
since it entails learning a distribution over model weights [16]. The variance in
predictions made with weights sampled from such a distribution is directly pro-
portional to the degree of model uncertainty, where low prediction variance sig-
nifies low uncertainty or high model confidence. Although scalable epistemic UQ
techniques have been proposed and successfully applied to supervised segmen-
tation models [2], extending these advancements to slice propagation techniques
has not been studied. The next section describes five state-of-the-art epistemic
UQ methods and their adaptation for slice propagation tasks.

Deep Ensemble [18] enhances prediction accuracy and robustness by lever-
aging multiple independently initialized, identically trained models (e.g., ensem-
ble members) [I8]. In this frequentist approach to UQ, the predictions from each
ensemble member provide a distribution. The mean of this distribution provides a
robust ensemble prediction, and the variance captures epistemic uncertainty. We
used four initializations to train slice propagation models, namely base initializa-
tion (similar to original implementations), Kaiming (He) uniform initialization,
Glorot (Xavier) uniform initialization, and a custom normal initialization. This
strategy ensures each model in the ensemble explores different data represen-
tations, encouraging prediction diversity for calibrated UQ and enhancing the
ensemble’s generalization capabilities.

Batch Ensemble [29] improves on the traditional deep ensemble approach
by significantly reducing the computational and memory demands, which typi-
cally scale linearly with the number of ensemble members. Batch ensemble com-
promises between a single network and a full ensemble by defining member-
specific convolutional weight matrix W;, as the Hadamard product of a shared
base weight matrix Wgpareq and two member-specific rank-one vectors, r; and
S;i: W; =1; o Wyhareq © slT. When training slice propagation networks with the
batch ensemble, predictions are made with each set of member-specific weights.
Then, similar to deep ensemble, member predictions are averaged in inference
to provide a robust prediction, and the variance in predictions provides UQ.
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Monte Carlo (MC) Dropout [8] is a widely used regularization tech-
nique that also provides a scalable solution to approximate variational inference
[8]. MC Dropout involves randomly omitting model weights during training and
inference, enabling the model to produce a range of predictions for the same in-
put. This variability captures the degree of model certainty, as confident models
will make similar predictions with different dropout masks. For slice propaga-
tion methods, we place a dropout layer within each network block after ReLLU
activation [I]. The dropout rate was selected to be 0.2 in hyperparameter tuning
to balance accuracy and model robustness.

Concrete Dropout [9]. MC dropout requires time-consuming and compu-
tationally expensive manual tuning of layer-wise dropout rates to acquire well-
calibrated UQ. However, concrete dropout employs a continuous relaxation of the
dropout’s discrete masks, allowing for the automatic optimization of per-layer
dropout probabilities in tandem with network weights, significantly streamlin-
ing the process. We integrated spatial concrete dropout within all convolutional
layers of slice propagation methods.

Stochastic Weight Averaging Gaussian (SWAG) [20] builds upon
stochastic weight averaging [I3], a technique that defines model weights as the av-
erage of weights traversed during stochastic gradient descent (SGD) after initial
convergence to find a broader optimum. SWAG fits a Gaussian distribution over
these traversed weights to model the posterior distribution of network weights.
The posterior estimation facilitates the generation of a distribution of predictions
that capture model uncertainty. The mean weights and their covariance matrices
are obtained during post-convergence training to estimate the Gaussian weight
distribution for slice propagation. We then sampled this distribution to obtain
the varied predictions needed for uncertainty estimation in inference.

The selection of 5 diverse SOTA scalable epistemic UQ methods is informed
by their varied approaches (covering frequentist and Bayesian perspectives) to
addressing model uncertainty effectively [2]. Each method was chosen for its
unique strengths: Deep and Batch Ensembles provide robustness through model
averaging; MC Dropout and Concrete Dropout facilitate practical uncertainty
estimation during training and inference, critical for deployment in clinical en-
vironments; and SWAG captures variability in model parameters through its
approximation of the posterior distribution. This diverse toolkit allows us to com-
prehensively evaluate and enhance the predictive reliability and interpretability
of self-supervised slice propagation methods.

Evaluation Metrics. To evaluate the performance of slice propagation meth-
ods, we utilize the Dice Similarity Coefficient (DSC)[15[7]. Additionally,
to check if the predicted segmentation conforms to the actual organ boundaries
and surfaces, we also report Surface Dice and Average Hausdorff Distance
(AHD). To assess the UQ calibration, we consider the Pearson correlation
coefficient (r) between the predicted epistemic uncertainty and prediction error
(1-DSC). A higher r value signifies better UQ calibration, as we would expect
model uncertainty to be high when the prediction error is high. We also utilize the
area under the error retention curve (R-AUC) to jointly assess segmen-
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tation accuracy and UQ calibration. Error-retention curves plot the prediction
error (100 - DSC) against the proportion of data retained after iteratively exclud-
ing predictions with the highest uncertainty. The R-AUC quantifies the model’s
performance across different levels of uncertainty retention. A lower R-AUC in-
dicates better accuracy since it implies lower error across retained predictions,
and better UQ calibration since it implies uncertainty/error correlation.

3 Results

Datasets Used. Our study employs a diverse array of datasets for training and
evaluation. We sourced our training data from: KiTS [II], which includes 300
multi-phase CT scan volumes; CT Lymph Nodes [24], utilizing the 86 abdom-
inal lymph node volumes; and Pancreas-CT [23], with 82 volumes of abdom-
inal contrast-enhanced 3D CT scans. For evaluation, we used three datasets:
SLIVEROQ7 [10], consisting of 20 clinically sourced 3D CT liver volumes; CHAOS
[28], a comprehensive multi-organ segmentation dataset where we used only CT-
based liver segmentation; and DecathSpleen [26], featuring 41 volumes of portal
venous phase 3D CT scans for spleen segmentation.

Implementation Details. We used the original implementations of Sli2Vol [30]
and Vol2Flow [5]. For UQ methods on 3D volume segmentation, we referenced
the implementation release by a recent UQ benchmark [2]. We scale the slice fea-
turing the anatomy’s largest manually annotated area as the annotated slice. We
used four ensemble members for ensemble-based models and 30 posterior sam-
ples to get an average prediction for dropout and SWAG methods. We use only
four ensemble members based on empirical findings, balancing computational
(limited GPU memory) requirements and performance gain.

3.1 Uncertainty Quantification Results

UQ Methods Performance Insights. Table [I] presents comprehensive results
of UQ methods applied across three datasets for both Sli2Vol and Vol2Flow.
Most UQ methods improve upon baseline performances in DSC and surface
metrics, underscoring their utility in boosting model precision and reliability
across varied datasets and tasks.

Baseline deterministic models, without the integration of UQ, establish a
fundamental level of accuracy, yet exhibit notable boundary detection challenges,
as indicated by higher AHD values. Concrete dropout demonstrates superior
segmentation and uncertainty estimation, outperforming other UQ methods in
accuracy. SWAG shows higher UQ calibration than ensemble methods, even
with low-accuracy models, indicating that SWAG is a good UQ estimator, which
will be important for annotation-efficient models. The SWAG method results in
reduced segmentation accuracy, likely because it utilizes an average of converged
weights, whereas the baseline employs the best of converged weights as assessed
by the validation performance. However, SWAG provides better calibrated UQ
than other methods, which suggests that it learns a wide posterior distribution of
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weights, resulting in diverse predictions that provide a poorer averaged estimate
but accurately capture the degree of model confidence.

The results highlight the efficacy of dropout techniques, specifically concrete
dropout, for their robust segmentation and uncertainty quantification capabil-
ities. Combined with the ease of integration, these robust capabilities make
dropout highly effective for medical imaging tasks. Deep ensemble and batch
ensemble offer a balanced improvement over baselines, and SWAG’s notable un-
certainty estimation ability underscores the need for careful UQ method selection
based on specific application requirements. This analysis emphasizes the critical
role of choosing the right UQ approach to optimize model performance, consid-
ering the trade-offs between reducing errors and enhancing correlation measures.

Table 1. UQ results. Mean and standard deviations of DSC, surface dice, AHD, r,
and R-AUC scores using predictions from Sli2Vol [30] and Vol2Flow [5] on all three
datasets.

Sli2Vol Vol2Flow
UQ Methods DSC 1 Surface Dice AHD | r 1T  R-AUC | DSC 1 Surface Dice 1 AHD | rtT R-AUC |
Base (w/o UQ) | 91.44+£2.94 65.9246.59  110.70£54.92 - - 92.5843.68  69.95£4.32  95.34435.24 - -

5| Deep Ensemble | 91.68+3.02  67.53+7.52  99.32+47.36 0.13  4.09+1.38 | 92.97+4.15 71.54+5.21  89.47+32.88 0.27 3.2542.47
3| Batch Ensemble | 91.08+£2.91  65.67+8.27  109.324+54.14 0.08 4.48+1.35 || 92.13+£3.77  70.06+£5.98  95.15+38.75 0.15 2.954+3.21
E MC Dropout 92.404£2.89  67.5249.28 101.51£43.51 0.19 3.30£1.12 || 93.58%3.41  71.45%+6.89  90.84+27.63 0.35 3.2243.52
»| Concrete Dropout |92.48+3.16 68.82+9.45  93.27+43.84 0.23 3.49+1.26 |/94.02+1.98 72.49+5.66 85.48+29.55 0.43 2.9442.81
SWAG 83.03£7.33  39.97+1.39 48.62+23.15 0.69 3.21+1.59 || 85.26£5.74 61.5249.65 93.84+17.81 0.67 3.1743.88
5| Base (w/o UQ) [89.41£8.77 85.97+10.54 19.39+11.84 - - 86.55+7.29  82.24+8.67 15.56+8.68 - -
% Deep Ensemble | 89.97£8.49 87.42+10.51  16.434+12.01 0.15 5.88+5.44 || 87.15+£7.06 84.98+7.45 14.74+9.25 0.22  5.12+£3.97
®| Batch Ensemble | 88.97+8.73 86.064+11.04 19.16£15.85 0.38 6.36+£5.42 || 86.2247.87  84.00£8.56  15.02£10.57 0.40 5.9944.52
f; MC Dropout 90.78+6.85  87.8949.80  14.67£10.40 0.52 4.84+4.57 || 89.2448.24 85.45£10.57 13.95£8.65 0.58 4.7845.48
§|Concrete Dropout |91.24:£6.83 88.80+9.70 13.78+9.44 0.27 5.05 + 4.88 ||90.82+6.54 87.65+9.21 12.84+9.87 0.32 4.56 + 5.35
=] SWAG 84.554+9.12  73.00£16.75  15.82+6.56 0.42 4.28 + 2.69||81.06+£10.41 74.58+11.56 13.24+10.45 0.41 4.92 4 3.58
Base (w/o UQ) | 91.11+8.82 41.96+13.86 67.49+21.41 - - 85.31+4.62  46.54+9.21  62.84£15.55 - -
®| Deep Ensemble [93.66+7.21 50.704+12.96 65.64+22.40 0.75 7.1445.23 | 86.17+4.35 48.62+8.91  59.98+17.24 0.77 6.5346.11
9,: Batch Ensemble | 92.30+6.59 43.204+12.43  67.24£24.25 0.80 7.40£4.64 | 86.57£5.89  47.56+9.11  62.08£20.57 0.82 6.5945.22
E MC Dropout 93.404+6.77  45.29+12.77  60.14+£20.93 0.75 6.53+4.60 ||87.094+5.61 51.654+8.84 57.84+14.65 0.81 5.89+3.84

Concrete Dropout | 92.36+8.02  45.37+13.11  57.67+20.38 0.81 7.68+5.90 | 86.824+4.89 54.89+10.65 54.58+13.64 0.87 6.1244.55
SWAG 84.3246.79  32.704+7.29 48.32+10.62 042 4.20£1.63 || 74414522 42.2648.47 58.41+18.54 0.51 5.9444.87

Performance Trends. In assessing the Sli2Vol and Vol2Flow models, we also
report metrics on a more granular slice level, shedding light on critical knowl-
edge gaps that are not captured by the mean performance statistics over the
dataset. Mean DSC and associated uncertainties, when averaged over large vol-
umes, could mask the true performance nuances of these models. Our targeted
analysis revealed a discernible performance drop and increased uncertainty in
models as segmentation predictions deviate from the manually annotated slice,
as shown in Figure [TJA. This trend reflects a model’s diminishing accuracy and
confidence as it ventures further from the annotated slice. We observe that the
error and uncertainty estimates correctly correlate across distances from the an-
notated slice, suggesting accurate confidence estimation. Figures[IB and C bring
to attention the steeper decline in surface dice scores as compared to overall DSC,
signaling a quicker degradation in the model’s ability to retain surface informa-
tion shortly beyond the annotated slice. This quick degradation is problematic as
it indicates a rapid loss of accuracy in capturing the intricate contours and edges
of anatomical structures. In medical applications, such as surgical planning or
tumor resection, the precise delineation of surfaces is crucial. Imprecise surface
segmentation can lead to inaccurate identification of tumor margins or criti-
cal anatomical landmarks, compromising treatment outcomes. A similar pattern
emerged in the Vol2Flow analysis, shown in Figure 2, affirming this as a broader
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trend across both modeling approaches. Supplementary GIFs are provided to
visually demonstrate the progression of predicted segmentations and associated
uncertainties through a volume.
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Fig. 1. Sli2Vol accuracy and uncertainty variation as a function of distance
from annotated slice A. Comparative analysis of variability in DSC and uncertainty
metrics relative to the distance from the annotated slice when using concrete dropout
(dataset: DecathSpleen). Performance metrics (B) DSC,(C) surface dice and (D)
uncertainty for all UQ Methods, relative to the distance from the annotated slice.

Failure Modes in Slice Propagation Methods. Through detailed analysis
of Figures [1] and 2, along with observations from our study, we identify several
key limitations of Sli2Vol and Vol2Flow models: (a) A pronounced decline in
performance metrics is observed as soon as models predict slices merely 5-20
mm away from the annotated slice. Notably, the accuracy of surface metrics
diminishes starting from slices closely adjacent to the annotated slice. (b) The
models exhibit difficulties in handling non-convex anatomical structures where
the segmentation is discontinuous or due to branching anatomical structures. For
example, across slices, femur bone segmentation becomes split into two substruc-
tures, the greater trochanter and the femoral head. (¢) Training via a surrogate
registration task can inadvertently bias models toward assuming structural con-
tinuity since it emphasizes aligning continuous structures across slices. This bias
results in the failure of the models to recognize the natural discontinuity or
endpoints of anatomical features, resulting in over-extended segmentations.

4 Conclusion and Future Work

This study focuses on using slice propagation to reduce manual annotations in
training and limit inference annotations to a single slice, addressing the trustwor-
thiness of these methods amid minimal expert-driven supervision. We integrated
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five UQ methods to evaluate their accuracy and uncertainty calibration in med-
ical image analysis. While we do not propose a novel method of epistemic UQ
estimation, we provide open-source, non-trivial extensions of existing methods to
this new task and benchmark their performance. Our assessments demonstrate
that incorporating UQ into slice propagation approaches enhances predictive ac-
curacy and provides usable confidence estimation, effectively bridging the gap
between semi-automatic methods and user reliance, previously unexplored. Fur-
thermore, our investigation uncovers critical failure modes in slice propagation
methods that may go unnoticed by users. Recognizing these shortcomings is
pivotal to inform improvement and continuous model refinement. Future work
could explore the influence of domain variation (e.g., CT vs MRI) on uncertainty
estimation. Additionally, there is substantial potential to adapt UQ techniques
to more adeptly handle the intricate challenges of slice propagation. Calibrated
UQ could guide the development of methodologies capable of mitigating the
failure modes observed in current segmentation methods. This work reveals the
potential and shortcomings of slice propagation segmentation models with UQ),
increasing the potential for safe, feasible self-supervised anatomy segmentation.
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