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Abstract. Generative image reconstruction algorithms such as mea-
surement conditioned diffusion models are increasingly popular in the
field of medical imaging. These powerful models can transform low signal-
to-noise ratio (SNR) inputs into outputs with the appearance of high
SNR. However, the outputs can have a new type of error called halluci-
nations. In medical imaging, these hallucinations may not be obvious to
a Radiologist but could cause diagnostic errors. Generally, hallucination
refers to error in estimation of object structure caused by a machine
learning model, but there is no widely accepted method to evaluate
hallucination magnitude. In this work, we propose a new image qual-
ity metric called the hallucination index. Our approach is to compute
the Hellinger distance from the distribution of reconstructed images to
a zero hallucination reference distribution. To evaluate our approach,
we conducted a numerical experiment with electron microscopy images,
simulated noisy measurements, and applied diffusion based reconstruc-
tions. We sampled the measurements and the generative reconstructions
repeatedly to compute the sample mean and covariance. For the zero
hallucination reference, we used the forward diffusion process applied to
ground truth. Our results show that higher measurement SNR leads to
lower hallucination index for the same apparent image quality. We also
evaluated the impact of early stopping in the reverse diffusion process
and found that more modest denoising strengths can reduce hallucina-
tion. We believe this metric could be useful for evaluation of generative
image reconstructions or as a warning label to inform radiologists about
the degree of hallucinations in medical images.
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1 Introduction

In the rapidly evolving landscape of medical image reconstruction algorithms,
generative models have become increasingly popular. Examples include gener-
ative adversarial networks [15, 20, 21], normalizing flow models [7] [8], and dif-
fusion models [9] [10][13][19]. These generative models have shown exceptional
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capability in transforming low signal-to-noise ratio (SNR) inputs into higher
quality outputs that appear to have high SNR with realistic structural details.
However, the advancement of generative reconstruction methods introduces a
new type of error called hallucinations. Hallucinations are commonly referenced
in research literature [1] [2] [20] [11] [5] but definitions vary. Generally, hallu-
cinations are structural uncertainty in the output of machine learning models,
especially generative models. It is distinct from measurement noise which does
not have the appearance of varied object structure.

Hallucinations in the context of medical imaging are particularly concerning
and several members of the field are sounding the alarm [4] [16]. These errors,
while not immediately obvious to radiologists, could lead to diagnostic inaccu-
racies, compromising patient safety. Despite the recognition of hallucinations
as a potential issue, the field lacks a standard methodology for quantitative
evaluation of such generative artifacts. To address this gap, we propose the hal-
lucination index, a novel image quality metric designed to evaluate the extent
of hallucinations in the outputs of generative algorithms. Our approach employs
the Hellinger distance [12] between the distribution of reconstructed images and
a zero-hallucination reference distribution. The reference distribution should be
generated without a machine learning model, and it should have the same appar-
ent SNR as the reconstructions without the structural variability. For example,
in diffusion models, we can apply the forward diffusion process to ground truth.

One noteworthy alternative for evaluating hallucinations in medical images
is the Hallucination Map proposed by [2]. This method involves projecting the
reconstructions to the imaging system null space to identify features which prov-
ably did not arise from the measurements. While this method could be extremely
useful, especially for ill-conditioned inverse problems, we argue it does not cap-
ture the possibility of hallucinations within the measurement space. For example,
if an imaging system is unbiased with additive noise, it technically has no null
space, but a generative denoising model may still be affected by hallucinations.
By comparison, our hallucination index is a distribution-to-distribution distance
metric, which could measure the hallucinations in this scenario.

The image reconstruction task we simulated is electron microscopy (EM) of
cortical neurons using the Machine Intelligence from Cortical Networks (MI-
CrONS) dataset [6] which is openly available under a Creative Commons Public
License. This modality offers the high spatial resolution necessary for neuron
body segmentation and connectome mapping. However, the time it takes to
scan hundreds of terabytes of imaging data per cubic millimeter represents a
significant bottleneck. One proposed solution is to decrease the dwell time [3].
While effective in reducing scan time, this method decreases the SNR of the re-
sulting images [18]. Generative image restoration with diffusion models emerges
as a promising solution for low dwell time EM reconstruction, but one concern
is that hallucinated artifacts could interfere with segmentation, leading to incor-
rect interpretations of neural structures. Our experiment aims to evaluate the
tendency of diffusion based reconstructions to hallucinate and how those hal-
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lucinations vary with respect to other parameters and metrics like input SNR,
reverse process stopping time, and mean squared error.

2 Theoretical Methods

Fig. 1. Probabilistic graphical model of true images, measurements, and reconstruc-
tions. The hallucination index is defined as the Hellinger distance between the re-
construction distribution and a zero-hallucination reference distribution. In diffusion
models, the forward process can be used as the zero hallucination reference.

2.1 Hallucination Index

A probabilistic model of image reconstruction is shown in Figure 1. We con-
sider the true images, x, the measurements, y, and the reconstructed images, x̂,
as flattened random vectors. The measurements are a stochastic function of the
true images, related by the conditional probability density function p(y|x). Clas-
sical reconstruction methods are often deterministic functions of the measure-
ments, including linear deterministic methods like pseudo-inverse reconstruction
or nonlinear deterministic methods like pre-trained convolutional neural net-
works. However, there is increasing interest in generative reconstruction meth-
ods, such as diffusion models, which are a stochastic function of the measure-
ments. Therefore, we model the reconstruction process with the conditional prob-
ability distribution pθ(x̂|y), dependent on some parameter vector, θ. The joint
probability density function is

p(x,y, x̂) = p(x)p(y|x)pθ(x̂|y). (1)

Therefore, an end-to-end conditional probability density function of recon-
structions given true images is given by

pθ(x̂|x) =
∫

p(y|x)pθ(x̂|y)dy (2)
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This distribution of reconstructions can contain various types of error such
as bias (e.g. spatial blur), noise, and hallucinations. In the context of image re-
construction, hallucinations are generally understood to refer to variability or
uncertainty in the structure of an object arising from the application of a ma-
chine learning based image processing model. For example, if the measurement
signal-to-noise ratio (SNR) is low, and a generative image reconstruction method
is repeatedly applied to produce multiple samples of output images with the ap-
pearance of high SNR, this will typically result in highly varied estimates of the
object underlying the noise.

The key to our approach is to define what hallucinations are not. We claim
that when no machine learning model has been applied, there are no hallucina-
tions. For example, if white noise is added to the input, there will be increased
variance in the output, but that error is not a hallucination by definition because
no machine learning model has been applied. Therefore, we introduce a new dis-
tribution, q(x̂|x) which we define as a zero hallucination reference with the same
apparent signal-to-noise ratio as the generative reconstructions pθ(x̂|x). In the
case of diffusion models, this zero hallucination reference is available via the
forward diffusion process. We define the hallucination index as the Hellinger
distance between the distribution of reconstructed images and the zero halluci-
nation reference distribution as shown

H
(
pθ(x̂|x), q(x̂|x)

)
=

√
1−

∫ √
pθ(x̂|x)

√
q(x̂|x))dx̂ (3)

This metric has several desirable mathematical properties. First of all, it
is bounded by 0 ≤ H ≤ 1 with equality to zero when the two distributions
are identical and equality to one when the two distributions have no overlap.
Loosely, the hallucination index can be interpreted as the percentage of error
due to hallucinations as opposed to noise. The Hellinger distance is a metric that
satisfies the triangle inequality which could be useful for analyzing a cascade of
multiple data processing steps. Rearranging terms in (3) results in

H
(
pθ(x̂|x), q(x̂|x)

)
=

√
1−

∫
pθ(x̂|x)

√
q(x̂|x))√
pθ(x̂|x)

dx̂ (4)

The form of (4) now includes an expectation over pθ(x̂|x). This mean can be
approximated by the sample mean, and the probability densities can be approx-
imated by various methods such as kernel density estimation. In this work, we
chose to use a simpler approach where the hallucination index is approximated
by the Hellinger distance between two multivariate normal distributions with the
same mean and covariance as pθ(x̂|x) and q(x̂|x) using the closed form solution

H ≈
√
1− exp

(
− 1

4
(µp − µq)

T (Σp +Σq)−1(µp − µq) + c
)

(5)

c =
1

4
log |Σp|+

1

4
log |Σq| −

1

4
log |Σp +Σq|
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We approximate the covariance matrices by a circulant covariance matrix
with the same noise power spectrum. So, in practice we compute the halluci-
nation index by 1) taking multiple samples of the measurements 2) applying
the generative reconstruction model 3) computing the sample mean of the re-
constructions 4) compute sample noise power spectrum of the reconstruction
distribution and the zero hallucination reference distribution 5) compute the
hallucination index using the formula above.

2.2 Fourier Diffusion Models

We followed the methods in [17] to implement Fourier diffusion models. The main
difference with respect to most diffusion models is that the scalar multiplication
and additive white Gaussian noise in the forward stochastic process is generalized
to include convolutional operators and additive stationary Gaussian noise. The
practical benefit of this method is that we can construct a diffusion bridge model
starting from ground truth images at t = 0 and converging to the same noise
power spectrum as the measurements. At inference time, the reverse process
can be initialized at t = tstart directly from the measurements. Fourier diffusion
models are based on a forward stochastic process defined by

xt = Htx0 +Σ
1/2
t

1√
t
wt, t > 0 (6)

where Ht is a invertible circulant matrix operator representing the modulation
transfer function in the spatial frequency domain, Σt is a circulant covariance
matrix of spatially stationary Gaussian noise, and wt is a standard Wiener pro-
cess. The corresponding forward diffusion stochastic differential equation is

dxt = Ftxtdt+Gtdwt, Ft = H
′

tH
−1
t , Gt = [Σ

′

t − FtΣt −ΣtF
T
t ]

1/2 (7)

Following the framework for more general stochastic differential equations in
Appendix A of [14], we can define the reverse stochastic differential equation as

dxt = [Ftxt −
1

2
GtG

T
t ∇xt

log p(xt)]dt+Gtdw̄t. (8)

The generative model is implemented by approximating the score function
with a score matching neural network, sθ(xt, t) ≈ ∇xt

log p(xt). We can sample
from the reverse process, pθ(xt|xtstart = y) using stochastic integral sampling
methods such as the Euler-Maruyama method applied to (8). For hallucination
analysis, this will be compared to the forward process, q(xt|x0) ∼ N (Htx0,Σt),
which is a zero-hallucination reference with the same image quality in terms of
modulation transfer function and noise power spectrum.
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3 Experimental Methods

We conducted a large scale numerical experiment to evaluate hallucinations in
Fourier diffusion models with various configurations. The purpose of this ex-
periment is twofold. First, we seek to validate our proposed metric to verify
that it corresponds to what is commonly understood as hallucinations by visual
inspection. Second, we seek to quantify the relationship between hallucination
index and other measurable parameters and metrics such as input SNR, reverse
process early stop time, noise power spectrum, and mean squared error.

The experiment simulates the task of imaging cortical neurons through elec-
tron microscopy, particularly under conditions where the images are affected by
low SNR due to faster scanning. We used the Machine Intelligence from Cor-
tical Networks (MICrONS) dataset to model the ground truth images [6]. We
used 10,000 image samples of image size 256x256 for training, 1,000 samples for
validation, and 1,000 samples for evaluation.

For each evaluation case, we simulated 64 measurement noise realizations.
The measurement model is the ground truth images plus additive stationary
Gaussian noise with noise power spectrum, Σt, as shown in Figure 3. For the
Fourier diffusion model, we did not include any spatial blur, so Ht = I, and the
noise covariance increases linearly from zero noise to the same noise power spec-
trum as the measurements. This is similar to the variance-exploding stochastic
process defined in [14] but with spatially correlated noise rather than white noise.

For training the Fourier diffusion model, we used the exact same methods
described in [17] including score matching neural network architecture and score
matching loss function. We used 1,000 training epochs, 100 iterations per epoch,
32 images per batch, and the Adam optimizer with learning rate 10−3. After
initializing with measurements, we sample the reverse process with the Euler-
Maruyama method with 100 equally spaced time steps. We repeated the reverse
diffusion process sampling for each evaluation sample. An example of multiple
reverse process samples is shown in Figure 3. We also repeated all experiments
for 5 different measurement signal-to-noise ratio levels. This was accomplished
by initializing the reverse process with measurement simulations corresponding
to the intermediate noise power spectrum at tstart values of 1.0, 0.8, 0.6, 0.4, and
0.2. When running the reverse diffusion sampling, we saved all the intermediate
time step results. All together, this forms a large scale dataset that we used
for image quality evaluation. Each reconstruction distribution in the dataset

Fig. 2. Ground truth, measurements, and reverse process samples with hallucinations.
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Fig. 3. Comparison between forward and reverse process samples. Hallucination index
increases for more reverse diffusion steps because there is increased Hellinger distance
between forward and reverse process.

represents 64 samples from pθ(x̂|x). We computed the mean, bias, variance,
mean squared error, and noise power spectrum. We computed the hallucination
index as a function of bias and noise power spectrum using (5).

4 Results

Figure 3 shows a comparison of the forward and reverse process. The forward
process does not have hallucinations, it is ground truth plus noise. The reverse
process has hallucinations introduced by the diffusion model. The error images
show increasing divergence between the reverse process and the forward pro-
cess with more reverse diffusion steps. Visually, the error images for the reverse
process error near t = 0 show increasing intensity of structural patterns. Halluci-
nation is increasing with more reverse diffusion steps because there is increased
Hellinger distance between the forward and reverse process distributions.

Figure 4 shows a quantitative analysis of mean squared error and hallucina-
tion index as a function of measurement SNR and reverse diffusion time steps.
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Both mean squared error and hallucination index are reduced if measurement
SNR is increased. However, this is not always an option as it requires improve-
ments to the imaging data acquisition. Mean squared error can also be reduced
by running more iterations of a reverse diffusion process. However, we see that
hallucination index increases with more reverse diffusion time steps. Overall
there is a tradeoff between mean squared error and hallucination index. That is,
the more aggressive the denoising applied by a generative reconstruction model,
the more it hallucinates.

Fig. 4. Image quality metrics as a function of input SNR and reverse process time step.
Increasing measurement SNR decreases both mean squared error and hallucinations.
Increasing reverse process time steps reduces mean squared error but increases hallu-
cinations. Third plot shows tradeoff between mean squared error and hallucinations.

5 Conclusion

Our results demonstrate how the proposed hallucination index can be useful for
identifying and quantifying generative artifacts that are not sufficiently described
by mean squared error. However, our approach is not without its limitations.
Notably, we assumed that the reconstruction distribution is Gaussian and shift-
invariant. While these approximations facilitate computation, they may not fully
capture the complexity of the error distributions. We also acknowledge that we
have only tested our method on Fourier diffusion models, which form a direct
diffusion bridge from measured images to noiseless images. One unique aspect of
these models is the capacity for early stopping. This property was critical for our
work because we used the forward process at the same intermediate time as the
zero hallucination reference. This highlights a limitation of our approach that for
generative models purporting to synthesize noiseless images given noisy inputs,
the hallucination index will invariably evaluate to 100%, due to the fact that
noiseless images are given by a deterministic Dirac delta distribution. However,
we note that 100% hallucination index does accurately reflect the percent of
covariance that is attributable to hallucinations as opposed to noise, for cases
purporting to be a noiseless reconstruction.

Our approach relies on a well-defined zero hallucination reference distribu-
tion, and we use the Hellinger distance to measure the distance to the distribution
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of reconstructions. In the future, we are interested to investigate other options
for the zero hallucination reference distribution for cases when the forward dif-
fusion process may not be available. We can also investigate alternative distance
metrics such as KL divergence or other f-divergences in the future.

Looking forward, our goal is to refine and apply hallucination analysis meth-
ods. We want to explore optimized generative reconstructions for minimal hallu-
cinations. We are also interested to compare various diffusion-based reconstruc-
tion methods and evaluate their relative susceptibility to hallucinations.

In conclusion, the analysis of hallucinations in medical imaging is of paramount
importance, especially as generative reconstruction models become more preva-
lent. The proposed Hallucination Index represents one option for an quantitative
metric for image quality assessment, offering a tool to navigate the complexities
of enhancing image quality while minimizing the introduction of potentially mis-
leading generative artifacts. As we continue to refine this metric and apply it to
a broader range of models and applications, we anticipate valuable insights that
will contribute to the ongoing improvement of medical image reconstruction.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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