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Abstract. Segmentation of fetal brain tissue from magnetic resonance
imaging (MRI) plays a crucial role in the study of in utero neurodevelop-
ment. However, automated tools face substantial domain shift challenges
as they must be robust to highly heterogeneous clinical data, often lim-
ited in number and lacking annotations. Indeed, high variability of the fe-
tal brain morphology, MRI acquisition parameters, and super-resolution
reconstruction (SR) algorithms adversely affect the model’s performance
when evaluated out-of-domain. In this work, we introduce FetalSynthSeg,
a domain randomization method to segment fetal brain MRI, inspired
by SynthSeg. Our results show that models trained solely on synthetic
data outperform models trained on real data in out-of-domain settings,
validated on a 120-subject cross-domain dataset. Furthermore, we ex-
tend our evaluation to 40 subjects acquired using low-field (0.55T) MRI
and reconstructed with novel SR models, showcasing robustness across
different magnetic field strengths and SR algorithms. Leveraging a gen-
erative synthetic approach, we tackle the domain shift problem in fetal
brain MRI and offer compelling prospects for applications in fields with
limited and highly heterogeneous data.
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1 Introduction

Fetal brain magnetic resonance imaging (MRI) is an increasingly utilized diag-
nostic tool for studying neurodevelopment in fetuses [1, 2, 9]. Despite its po-
tential, creating automated pipelines for fetal MRI faces challenges due to the
limited availability of annotated datasets and data heterogeneity. The fetal brain
undergoes significant morphological changes during gestation and can be severely
altered by pathologies, which complicates its automatic analysis [24, 29, 31].



2 V. Zalevskyi et al.

Fig. 1. Domain shifts across data splits in fetal SR MRI. (GA in weeks, site-SR). A &
C - pathological, B & D - neurotypical.

Additionally, datasets encounter distribution shifts from variations in acquisi-
tion sites, scanners and imaging protocols [7, 16]. Utilizing super-resolution-
reconstructed (SR) volumes addresses issues like fetal motion artefacts [25] and
low through-plane acquisition resolution, but introduces additional heterogeneity
in texture, tissue contrast, intensity values and other reconstruction artefacts [32]
(see Figure 1). A recent study [23] on the FeTA 2022 MICCAI challenge revealed
significant performance drops in white matter (WM), gray matter (GM), and
ventricles segmentation when models were tested on diverse clinical datasets,
highlighting the impact of domain shifts on the analysis of fetal MRI.

Numerous techniques exist to mitigate domain shifts, including domain adap-
tation [6, 33], transfer learning [10], meta-learning [14], style transfer [34] and
data harmonization [8]. However, these methods typically rely on the availability
of at least target domain images which is challenging in domains with limited
data. Other approaches that use multi-centre learning [13, 17] require multiple
training domains which are costly and labour-intensive to acquire. In fetal brain
imaging, where new SR algorithms and MRI scanners introduce significant diver-
sity [18], available domains may not sufficiently capture the required variability
for generalizable models. Recent advancements in single-source domain general-
ization (SSDG) involve techniques such as global intensity non-linear augmenta-
tion (GIN) and causal interventions [19]. These modifications eliminate spurious
correlations, enhancing model robustness to variations in image intensities and
textures. In a related study [15], authors analyzed frequency’s effect on domain
discrepancy, using a mixed frequency spectrum for self-supervised augmentation.
While effective, limitations may arise in inducing spatial and intensity transfor-
mations, especially with diverse SR algorithms introducing artefacts associated
with skull stripping or the inclusion of extra-cerebral tissue.

A promising alternative approach involves synthetic data generation based
on segmentation maps [3, 4], achieving domain generalization through domain
randomization [27], only requiring labels but no images. Leveraging shape infor-
mation from segmentations, these models introduce diverse spatial and intensity
transformations, along with flexible artefact simulations, mitigating many fac-
tors causing domain shifts in MRI.

In our study, we delve into exploring how synthetic generative models can be
used to construct a diverse fetal brain dataset for training segmentation models.
Our contributions are the following: i) We adapt the domain randomization
of Billot et al. [3] to fetal brain MRI, accommodating specific fetal anatomical
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properties, acquisition artefacts and heterogeneity due to fetal brain development
and SR algorithms; ii) We show that our method, trained only using synthetic
data, performs better than models trained using real data when evaluated out-
of-domain and performs on par with state-of-the-art SSDG algorithms; iii) We
extend our evaluation to low-field (0.55T) MRI data, showing the robustness of
our approach to unseen magnetic field strength and SR algorithms.

2 Methodology

2.1 Data

Various datasets are used in our experiments to validate the SSDG efficacy
of the models we explore. These datasets come from multiple institutions and
were acquired using MRI scanners from various manufacturers, with different
field strengths, acquisition parameters and reconstructed with different SR algo-
rithms. The acquisition details are given in Table 1. All data adhered to approved
research protocols and ethics committees, in the corresponding institutions.
FeTA dataset. We used the publicly available data from the MICCAI 2022
FETA challenge (KISPI) [21, 22]. It consists of 80 subjects, among which 40 are
reconstructed using MIALSRTK [26] and 40 using Simple-IRTK [11]. Expert
annotators delineated seven tissue labels (external cerebrospinal fluid (eCSF),
GM, WM, ventricles, cerebellum, deep GM, and brainstem).
Clinical 1.5T dataset. Additionally, we include a proprietary clinical dataset,
named CHUV, containing 40 subjects reconstructed with MIALSRTK [26] and
manually annotated following the FeTA protocol [21]. This private dataset was
used to evaluate methods submitted for the FETA 2022 challenge and a detailed
description of it can be found in [23].
Clinical 0.55T dataset. We also evaluate our model on 40 neurotypical cases
acquired on a low-field scanner at Kings College London, referred to as KCL.
Subjects were SR reconstructed twice, using two novel methods, NeSVoR [32]
and SVRTK [28]. There are no available manual segmentations for this dataset.

2.2 FetalSynthSeg

Our generative model is inspired by SynthSeg [3] which is based on domain
randomization [27]. SynthSeg [3] leverages image segmentation as a structural
prior, integrating randomization across resolution, intensity, contrast, and spatial
distortions. This approach yields a diverse dataset that is well-suited for training
models capable of robustly handling these sources of variation. We adapt this
method to fetal brain segmentation by introducing some crucial changes related
to the tissue generation classes (see Figure 2).

Instead of directly using target segmentations as generation classes, our ap-
proach first introduces an intermediate seed generation step. In it, we initiate
synthetic image generation by defining four primary meta-labels: CSF, WM,
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Table 1. Dataset properties.

Site Scanner Acquisition
Parameters SR Res.

(mm3)
GA

(weeks)
Nn Np

K
IS

P
I* GE Signa Discovery

MR450/MR750
(1.5T/3T)

ssFSE
TR: 2500-3500/120 ms
0.5 x 0.5 x 3.5 mm3

mial 0.53 20-34 25 15

irtk 0.53 20-35 24 16

C
H

U
V

* Siemens
MAGNETOM
Aera (1.5T)

HASTE
TR/TE: 1200/90 ms
1.1 x 1.1 x 3 mm3

mial 1.13 21-35 25 15

K
C

L Siemens
MAGNETOM
FREE.MAX (0.55T)

HASTE
TR/TE: 2500/106 ms
1.5 x 1.5 x 4.5 mm3

svrtk
0.83 21-35 40 0

nesvor

*FeTA Data [21] Nn: neurotypical, Np: pathological

Fig. 2. Synthetic image generation framework. Original segmentation labels are merged
to create a 4-meta-label tissue map (CSF, WM, GM, skull). EM clustering then divides
each meta-label into 1 to 4 subclasses, capturing tissue heterogeneity. A generative
model uses these split meta-labels to produce synthetic images.

GM, and skull along with surrounding tissue. Then we employ the expecta-
tion–maximisation (EM) algorithm [5] for intensity clustering within each meta-
class, resulting in 1-4 subclasses per meta-class. In a second step, these subclasses
serve as inputs for synthetic data generators, producing images and segmenta-
tions that faithfully reflect the observed heterogeneity in SR and those intrinsic
to fetal brains, for example, related to WM maturation [12]. By leveraging tissue-
type subclasses rather than original segmentation labels during synthetic image
generation, we mitigate reliance on artificial contrast disparities between origi-
nal labels. This is a critical consideration given the heterogeneity within a single
class. This strategy is similar to the one used in [3] for cross-domain cardiac MRI
segmentation, which showed the importance of such splitting in representing the
target structures with different levels of heterogeneity. However, our approach
differs in that we split meta-labels instead of the original labels. This ensures that
the simulated heterogeneity reflects anatomical variability within labels of the
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same tissue type, while also preventing the model from learning label-specific
contrast boundaries that are often absent in fetal SR MRI images. Following
subclass creation, voxel intensities are independently sampled from Gaussian
distributions with randomly selected means and standard deviations. Random
artefact corruptions, including bias field simulation, Gaussian blur and noise
addition, are applied to introduce common noise and artefacts prevalent in SR
images. The generative model applies a battery of spatial transformations (affine
and elastic) to simulate spatial distortions. Table S1 in the Supplementary Mate-
rial provides all detailed parameters of the generative model. We use offline image
generation, creating 200 synthetic images per real image to train the model based
on purely synthetic images, which is referred to as FetalSynthSeg (or _synth as
a suffix) further in the text. Code and pre-trained model weights are accessible at:
https://github.com/Medical-Image-Analysis-Laboratory/FetalSynthSeg.

2.3 Segmentation model

Architecture. Based on Billot et al. [3] and Valabregue et al. [30], our study
employed a 3D U-Net with five levels, featuring instance normalization, max-
pooling, and upsampling operations in the expanding path. Each level includes a
3 × 3 × 3 kernel convolutional layer with LeakyReLU activation, except the final
layer using softmax activation. Starting with 32 feature maps, the initial layer
doubles and halves after max-pooling and upsampling layers, respectively. Skip
connections facilitate information flow between the contracting and expanding
paths. We use the same architecture and training hyperparameters across all
datasets and splits to ensure comparability.
Pre-processing. During model training, both real and synthetic images un-
dergo identical pre-processing steps before being fed to the model, including re-
sampling to 0.5 x 0.5 x 0.5 mm3 with centre crop and crop-padding to 256x256x256
(when needed), random contrast adjustment via gamma transformation, ran-
dom affine transformations (scaling, rotation, shearing, and translation), random
Gaussian noise and smoothing with detailed hyperparameters presented in Sup-
plementary Material Table S1. Subsequently, image intensities are normalized
between 0 and 1 via min-max normalization.
Training. Models are trained using Adam (LR = 10−3) on a combination of
Dice and Cross-Entropy losses [30] with a ReduceLROnPlateau scheduler [20]
(factor = 0.1, patience = 10) for up to 500 epochs (batch size = 1). Training
halts on persistent validation dice plateau in the last 10 epochs. Internal valida-
tion used 5 randomly selected cases per split, ensuring 35 real and 7,000 synthetic
images (200× 35) for the training of baseline and FetalSynthSeg respectively.

2.4 Experimental settings

In our experiments, we compare FetalSynthSeg model to i) a baseline model
trained on real images and labels (denoted from now on as baseline), as well as
to ii) fit_nnUnet5, FeTA 2022 challenge winner, an ensemble of nnUnet models
5 The model is available on the FeTA challenge DockerHub page [23].
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trained with 120 images (including all 80 from the KISPI site) using the GIN
SSDG approach [19]. We aim to show that our model using only synthetically
generated images can outperform models trained on real images when tack-
ling out-of-domain generalization and reach comparable performance to SSDG
SotA domain generalization approaches. We also compare FetalSynthSeg to
SynthSeg to validate the improvement of using the meta-labels subclass split-
ting instead of original segmentation labels for synthetic image generation.
Experiment 1 - High-Field Generalization. We perform the first domain
generalization experiment by using the FeTA data as well as the clinical 1.5T
dataset. This setting replicates the evaluations carried out in the FeTA challenge
2022 [23]. We consider three data splits, defined by images acquired at specific
sites and reconstructed with specific SR, namely KISPI - mial, KISPI - IRTK
and CHUV - mial (each containing 35 real images for the baseline training, and
7000 synthetic images for synth training). Two models are trained on each split,
one using the original FeTA data and labels, and another using the synthetic
data generated from the labels only. This yields a total of six models (denoted
as <Site>_<SR>_base/synth in figures). The models trained on one (Site, SR)
data split are tested on the two other (Site, SR) pairs. The mean dice score
(mdsc) and 95th percentile Hausdorff distance of each model variant are reported
(95th HD in Supplementary Material), and models are compared using the non-
parametric Wilcoxon rank-sum test with Bonferroni correction. The p-value for
statistical significance is set to 0.05.
Experiment 2 - Low-Field Generalization. We assess our trained model’s
adaptability to new, unseen data with a dataset comprising 40 neurotypical sub-
jects acquired at KCL on a low-field (0.55T) MRI scanner and reconstructed either
using SVRTK [11] or NeSVoR [32] (none of them used in FeTA data). We select
the top-performing model variant trained on original data and the counterpart
trained on synthetic data, both derived from the same data split. As no ground
truth is available, we evaluate model predictions by comparing tissue volume
growth through gestational age (GA) with FeTA reference data. A second-order
polynomial fit with a confidence interval is evaluated.

3 Results

High-field generalization. A comparison of the out-of-distribution model pre-
dictions is shown in Figure 3. Models trained on synthetic data consistently
outperformed those trained on original images across all out-of-domain testing
splits. Statistical tests confirmed the significance of the differences in mean Dice
scores, with p-values < 0.00005 for all paired comparisons between corresponding
baseline and FetalSynthSeg models trained and tested on the same split. The
same trend is observed with the 95th percentile Hausdorff distances, available in
Supplementary Figure S1. Additionally, we compared the segmentation accuracy
of our model with the FeTA 2022 challenge winners on the CHUV-mial dataset,
which was not used for fit_nnUnet training. We highlight that we reached a
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close, albeit slightly lower, performance to their solution, although our models
were trained on a third of the amount of data (as they rely on only 35 subjects).

The lowest Dice scores were obtained for pathological cases, particularly evi-
dent in the KISPI-mial split (see Figure 3B). This discrepancy can be attributed
to the fact that approximately 24% of the KISPI-mial dataset exhibits poor SR
quality often in the severe pathological cases, as noted in [21] and illustrated
in Figure 4 (top row). Nonetheless, we noted qualitative improvements in the
FetalSynthSeg model compared to the baseline model, as illustrated in Fig-
ure 4. Differences in skull stripping by IRTK and MIAL algorithms lead to erro-
neous segmentation of the skull and surrounding tissue using baseline models.
However, the synthetic model is more robust to SR-induced domain shifts and
artefacts and avoids these errors, even though it was trained on segmentations
from the same split. Additionally, we report Dice scores comparing the baseline
model, FetalSynthSeg and SynthSeg (trained using original generation strategy,
without meta labels or sub-classes splitting, as in [3]) models across individual
segmentation labels in Table S2 in the Supplementary Material.

Fig. 3. Comparison of the out-of-distribution performance of the segmentation models
(mdsc - mean Dice score across all tissues). (A) baseline (light) vs FetalSynthSeg
(dark). Data split: KISPI-mial (green), KISPI-irtk (red), CHUV-mial (blue). See Figure
S1 from the Supplementary Material for a comparison with in-distribution performance
as well as results split by gestational age. The dashed horizontal line inside the boxplot
corresponds to the mean value. (B) Pathological vs neurotypical, aggregated across all
models.

Low-field generalization. Segmented tissue volumes (total brain, GM, WM
and CSF volumes) as a function of GA for KCL-svrtk and KCL-nesvor seg-
mentations are illustrated in Figure 5. The volume growth curves obtained
from SVRTK reconstructions remain within the confidence interval for both
FetalSynthSeg and baseline models. A notable deviation is observed in all
estimated tissue volumes for NeSVoR reconstructions predicted by KISPI-irtk
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Fig. 4. Cross-domain model inference qualitative results. (A) Model trained on
CHUV-mial and tested on KISPI-irtk/KISPI-mial. (B) Model trained on KISPI-irtk
and tested on KCL-svrtk/KCL-nesvor.

baseline model and to a lesser extent from our proposed FetalSynthSeg model.
This discrepancy highlights a substantial domain gap within SR algorithms, re-
sulting in an underestimation of expected tissue volumes that do not occur on
a closer domain to the KISPI-irtk of SVRTK reconstructions. Remarkably, the
model trained on synthetic data demonstrates greater robustness to this domain
shift compared to the model trained on real data and exhibits minimal devia-
tion from the expected values calculated on the FeTA dataset while qualitatively
showing a superior performance as seen in Figure 4B. The baseline model strug-
gles with correct tissue segmentation on NeSVoR reconstructions due to out-of-
domain appearance, while performance is improved on SVRTK reconstructions,
which exhibit a smaller SR domain gap with IRTK reconstructions. While cor-
tex topology could still be more precise, the synthetic model shows consistent
qualitative performance across both scenarios.

4 Conclusion

Our study demonstrates that FetalSynthSeg allows robust fetal brain tissue
segmentation across datasets with significant domain shifts. We showed how
strong randomization of spatial and intensity properties during the synthetic
image generation helps models overcome differences caused by MRI acquisition
variations and super-resolution reconstruction. Even with half the data, our ap-
proach achieved performance close to state-of-the-art SSDG models trained for
fetal brain segmentation. Compared to models trained solely on real data, those
trained exclusively on synthetic data showed superior performance, particularly
in cases of novel SR algorithms or images acquired at different field strengths.
The generalization of segmentation models to low-field MRI is of utmost sig-
nificance, offering an avenue to enhance fetal MRI accessibility in underserved
cohorts and low-income regions, by providing a cost-effective diagnostic solution.
Our findings suggest that synthetic data can mitigate performance drops caused
by limited data and diverse imaging conditions, offering promising applications
in fields with highly heterogeneous data, such as fetal imaging.
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Fig. 5. Segmented tissue volumes vs GA for KCL data reconstructed with SVRTK
(top row) and NeSVoR (bottom row). KISPI_irtk_base (blue) and KISPI_irtk_synth
(orange) model predictions are compared to FeTA reference values (green) which are
based on the ground truth segmentation of 40 healthy subjects selected across all splits.
Lines are second-order polynomial fit and a corresponding shaded area is a confidence
interval. See Figure S2 in the Supplement for all tissues evaluation.
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