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Abstract. In recent years pseudo label (PL) based semi-supervised (SS)
methods have been proposed for disease localization in medical images
for tasks with limited labeled data. However these models are not curated
for chest x-rays containing anomalies of different shapes and sizes. As a
result, existing methods suffer from biased attentiveness towards minor
class and PL inconsistency. Soft labeling based methods filters out PLs
with higher uncertainty but leads to loss of fine-grained features of minor
articulates, resulting in sparse prediction. To address these challenges we
propose AnoMed, an uncertainty aware SS framework with novel scale-
invariant bottleneck (SIB) and confidence guided pseudo-label optimizer
(PLO). SIB leverages base feature (Fb) obtained from any encoder to
capture multi-granular anatomical structures and underlying represen-
tations. On top of that, PLO refines hesitant PLs and guides them sep-
arately for unsupervised loss, reducing inconsistency. Our extensive ex-
periments on cardiac datasets and out-of-distribution (OOD) fine-tuning
demonstrate that AnoMed outperforms other state-of-the-art (SOTA)
methods like Efficient Teacher and Mean Teacher with improvement of
4.9 and 5.9 in AP50:95 on VinDr-CXR data. Code for our architecture is
available at https://github.com/aj-das-research/AnoMed.
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1 Introduction

Computer aided diagnosis (CAD), a key aspect to gain medical assistance in
disease identification and treatment planning. Detection of abnormalities in
CXRs often involves drawing a bounding-box (b-box) around the target le-
sion [5]. Supervised methods like Faster-RCNN [15], Mask-RCNN [4], SSD [7],
YOLO [14] have shown remarkable performance in supervised setting. But the
lack of well annotated datasets in medical imaging has raised the importance of
semi-supervised (SS) b-box detection methods [8, 21, 24, 22, 2, 16, 1], especially
in thorax x-rays.

In recent years PL based SS frameworks like Efficient Teacher [20], Mean
Teacher [17] achieved significant performance on natural vision. Two key fac-
tors in these methods are- (1) Designing algorithms that can exploit the



2 Abhijit Das et al.

Fig. 1: (A) Overview of a chest x-ray dataset validating the need of a scale-
invariant feature extractor. (B) Effectiveness of proposed EDMs and PLO
during PL generation. Example input image from VinDr-CXR test set has 3 an-
notations of varying sizes: Plural Thickening (PT), Calcification (CF) and Nodule/
Mass (NM). Soft Labeling fails to attend the minor lesions NM (7x smaller than CF).
Conversely, PLO generates dense PL heatmap, attends the minor lesions precisely.

inherent semantics of the unlabeled data, and (2) Maintaining the
consistency of generated PLs across all classes. FPNs [6] has dominated
over Featurizing Image Pyramids [13] in extracting semantics from encoder lay-
ers to form a feature pyramid. But, in FPNs information loss from the top level
of the pyramid hinders the objective of learning coarse to fine-grained features.
To tackle this, AugFPN [3] proposed residual augmentation based FPN. Nev-
ertheless, this may not explicitly capture the scale-invariant information flow in
medical images. On the other hand PL assignment is the key to mitigate PL
inconsistency. While consistency regularization methods like ATSS [23] and Au-
toAssign [25] cannot be applied in SS detection frameworks, soft labeling [18]
proposed a PL filtering technique. This discards the uncertain PLs based on
only the objectness score while optimizing SS loss.

In CXR images, there can be multiple target lesions of different scales (as
shown in Fig 1(A)) and datasets are often highly imbalanced. While adopting
existing natural vision based SS methodologies on medical images there are two
major concerns- (1) Existing FPNs and AugFPN may not capture the
scale-invariant features in CXRs. In Fig 1(B) also, larger target regions
has strong bias and enforces the detector to rarely attend the minor anomalies.
(2) To reduce PL inconsistency soft labeling methods simply drop
uncertain PLs by a 2-way threshold. And the unsupervised loss (Lus

det)
only accounts for the classification scores of each PL ignoring regression efficacy.
This gradually increases the Lus

det at each iteration and model fails to converge,
predicting inaccurate and sparse b-boxes (Fig 1(B)).

To overcome these challenges we propose AnoMed, an anomaly detection
framework tailored for medical images. To the best of our knowledge, AnoMed
is a pioneering effort to develop a consistency regularization based SS b-box re-
gression method for cardiac diseases. AnoMed consists of a novel scale-invariant
bottleneck (SIB). Inside SIB multi-layer encoding-decoding modules (EDMs)
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Fig. 2: Holistic architecture of AnoMed. A SS setup with Teacher-Student
mutual learning, novel SIB module and curated confidence-guided loss function.

captures underlying representations in enhanced feature map (Fe). Furthermore,
AnoMed incorporates a new uncertainty aware optimizer PLO that categorizes
the PLs into Confident (PLc), Hesitant (PLh) and Scrap (PLs). Then, utilizing
an uncertainty aware Lus

det PLO prevents hesitant PLs to participate in subse-
quent model updates and increases the confidence scores in PLh. PLO exhibits
denser PL heatmaps as shown in Fig 1(B) and detects precise b-box for minority
classes too. To this end, the key contributions of our paper are summarized as:

1. An unique layered encoding-decoding bottleneck, SIB is proposed.
SIB module captures local to global features of small to large diseases.

2. Uncertainty guided PLO to reduce PL inconsistency. Instead of fil-
tration, PLO refines the PLs and boosts confidence into mutual learning. We
also integrated distribution alignment (DA) objective to stabilize training.

3. Out-of-distribution fine-tuning of AnoMed for enhanced general-
ization. AnoMed is evaluated on thin hairline fracture images besides CXRs.

2 Method

2.1 Preliminaries

Distribution Alignment: In SS learning DA learns a transformation D that
minimizes the distribution discrepancy between the feature representations of
labeled and unlabeled data using the KL divergence [10], Formulated as:

min
D

KL
(
P (Xl)

∥∥∥∥P (Xu)

)
=
∑

xl∈Xl

P (xl) log
P (xl)

Q(xl)
(1)

where, P (Xl) and P (Xu) represent the probability distributions for labeled and
unlabeled data, respectively. Here, P (xl) and Q(xl) are the probability density
functions of feature representations. DA quantifies the amount of information
loss when P (Xl) is used to approximate P (Xu) and aligns the representations
from labeled and unlabeled data.
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2.2 Proposed Architecture

Overview: Proposed SS framework AnoMed is based on a student-teacher
mutual learning approach driven by exponential moving average. 4 major com-
ponents are encoder (E), SIB, PLO and a curated SS loss function (Ldet).
Labeled ({(xi,yi)}Ni=1) and unlabeled ({xj}Mj=1) images are fed to E (Default
is ResNet50). Extracted features from the encoder layers are scaled and aggre-
gated by the Feature Aggregator (Fa) capturing multi-level information. Fb is
fed to the SIB to obtain instance-level scale-invariant features and intrinsic re-
lationships among the large and small anomalies. SIB employs spatial attention
(As) gated shallow EDMs and features from the decoder are fused by the Ad-
ditive Module along the channel to obtain Fe. Then anchor boxes are generated
across the Fe. Region of Interest (RoI) pooling extracts fixed-size feature maps
from Fe corresponding to each proposed RoI defined by the anchor boxes. The
detection head (Dh) processes the RoI-pooled features to predict b-box offsets,
classification scores, and objectness scores for each RoI. Then proposed PLO is
employed to refine the generated PLs. Followed by a soft non-max-suppression
b-boxes are predicted. Proposed loss function Lss

det calculates the weighted loss
for labeled and unlabeled data and back-propagates through the student.

Feature Aggregator (Fa): Fusion of feature maps of the backbone en-
hances semantic information into Fb. This can be formulated as:

Fb = Fa(X1,X2, ..,Xn) = F

(
n⊕

i=1

U(Xi)

)
(2)

where,
⊕

represents the concatenation along the channel dimension, U(Xi)
denotes upsampling, Xi denotes the feature map of scale i, and F(·) is the
feature fusion operation.

Scale Invariant Bottleneck (SIB): As shown in Fig 2 SIB takes Fb as
input and outputs enhanced spatial and channel-wise attended scale-invariant
multilevel enhanced feature map Fe. In SIB, N layers of shallow EDMs are
stacked in parallel. These EDMs are designed to capture multiscale features
from the input Fb. In each EDM encoding layers gradually decrease the spa-
tial dimensions and increase the number of channels. Then spatial attention
gated decoder gives a attended feature representation capturing dense features.
Encoder-decoder connector (CEDs) scales the features extracted from one EDM
to match the shape of next EDM. alternating combination of EDMs and CEDs

generates multiscale feature maps. Features obtained from all layers are fused by
the Additive Module through a scale-wise concatenation and channel attention
to obtain the Fe. This can be formulated as:

Fe = softmax
(

w2δ (w1Z)

σ (w2δ (w1Z))

)
⊙Fj (3)

where, Fj is the input feature map for a specific channel, Z denotes the global
average-pooled feature map w1 and w2 are weight matrices. ⊙ denotes element-
wise multiplication. The differentiating factor of SIB from the FPN based feature
extraction is, at each pyramid level FPN only contains features from
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a single scale, but SIB contains features from each scale and each
level combined. This helps to detect multi-granular lesions and learn inter-
class relationships at an instance level.

Pseudo Label Optimizer (PLO): Fe followed by a consecutive operation
of region proposal and RoI pooling enters the detection head. Dh processes the
RoI-pooled features to predict bounding b-box scores (Cb), objectness scores
(Co), and classification scores (Cc) for each RoI. By soft NMS the confidence
scores (Cs) of PLs are obtained from RoIs. During SS training extraction of Cs
remains identical for both student and teacher module. As illustrated in Fig 2,
PLs with Cs above t1 are considered as confident, PLs with Cs below t2 are
discarded and considered as background and the rest is the hesitant (PLh).
Proposed PLO effectively leverages the PLhs by utilizing the uncertainly aware
confidence guided SS loss function Lss

det. Lss
det can be formulated as:

Lss
det =

1

M

M∑
j=1

(CE(Sc, Ŝc) + (1− IoU(Sb, Ŝb)) + (CE(So, Ŝo)) + Ld︸ ︷︷ ︸
Ls

det between PLO outputs and labels in Student

+λ · Lus
det(Ŝ, T̂ )︸ ︷︷ ︸

Lus
det loss

(4)
where, (Sc, Ŝc), (Sb, Ŝb), (So, Ŝo) are the target-prediction pairs for classifi-
cation, b-box and objectness scores respectively. Ld is the DA loss, calculated
using equation 1. Ŝ and T̂ are predictions by Student and PLs generated by the
Teacher. Lus

det employs a checkpoint Cp to soften the t1 and t2 constraints and
introduce flexibility to guide PLh for unsupervised optimization. This effectively
reduce false positives. When a PL is categorized as PLh, Cp outputs an indicator
signal Ib or Io or Ic (as shown in Fig 2). If any two of (Cb, Co, Cc) are greater
than t2 then the one of the indicator activates and outputs 1. That means, if a
hesitant PL has higher confidence in two of Cc, Cb and Co but suffers a deficit
in Cs, then the hesitant PL will be guided to the unsupervised loss for refinement
with special attention towards the uncertain confidence attribute. The Lus

det can
be formulated as:

Lus
det =

1

M

M∑
j=1

Ic · CE(Ŝc, T̂c) + Ib · (1− IoU(Ŝb, T̂b)) + Io · CE(Ŝo, T̂o)︸ ︷︷ ︸
Lus for hesitant pseudo labels PLh

+MSE(Ŝ, T̂ )︸ ︷︷ ︸
Lus for PLc

)

(5)
where, a single hesitant PL is guided to any one of the three uncertainty aware
conditions. This potentially eliminates the inconsistency and sub-optimal model
updates by boosting confidence. Impact of PLO and curated loss function is
illustrated in Fig ?? in supplementary.

3 Experiments

Datasets: We utilized two b-box annotated open-source datasets. The VinDr-
CXR dataset [11] includes 18000 CXR scans of 14 diseases. To mitigate potential
disparity a Weighted Box-Fusion (WBF) preprocessing is applied. The TBX11K
dataset [12] consists of 11200 X-rays, including 4 classes. We have used the
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Fig. 3: Comparison of AnoMed against the SS SOTA methods on all three datasets.

official splits for experiments. For OOD fine-tuning the Hairline Bone Fracture
(B-Fract) dataset [19] consisting 4346 images is used with 8:2 train-test split.

Implementation Details: Our models were implemented using PyTorch
and trained on a 16GB NVIDIA RTX A4000 GPU. The input image size was
224 × 224, batch size of 8 with learning rate 0.01. We employed Adam optimizer
with momentum 0.9 and weight decay of 0.0001 for optimization. Only mosaic
is used for soft augmentation and for hard augmentation, flip, color-jittering,
cut-mix are used. The max training epoch is 100 and EMA smoothing of 0.999.

Techniques of Comparison: We utilize AP50 and AP50:95 as standard
metrics for b-box detection. AnoMed is evaluated against SOTA SS frameworks.
For fair evaluation of proposed SIB we have evaluated AnoMed in supervised
settings too. To further prove our hypothesis of scale-invariant learning we eval-
uated AnoMed for large and small target classes separately on VinDr-CXR.
Performance with 5%, 10%, 15% and 20% labeled images is also reported. We
have also visualized the attention heatmaps throughout the paper using gradient
independent EigenCAM [9]. An interpretable analysis is also shown in Fig ?? in
supplementary to understand AnoMed’s decision making based on the learned
salient features.

4 Results

VinDr-CXR: Table 1 states that AnoMed outperforms existing methods by
a significant margin. With 20% labeled data, AnoMed achieves 4.9 and 5.9
AP50:95 improvement over Efficient Teacher and Mean Teacher, respectively.
It outperforms other methods in learning large anomalies (e.g., Cardiomegaly
(CM), Pleural Fibrosis (PF)) and fine-grained anatomical structures (e.g., Aor-
tic Enlargement (AE), Nodule or Mass (NM)). As shown in Fig 3, methods
Efficient Teacher and Mean Teacher exhibits comparable results for large target
lesions. But fails to detect the minor small sized anomalies due to the inherent
feature loss from FPN and PL inconsistency. Transformer based Semi-DETR
suffers from lack of local attentiveness. Additionally, AnoMed achieves more
performance gain over existing methods with increasing data scarcity. Detailed
analysis reported in Table ?? in supplementary.
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Table 1: Quantitative results of AnoMed against SOTA methods with 20%
labeled data. Shaded regions denotes supervised setting. A:VinDr-CXR, B:TBX11K-
CXR, C:B-Fract dataset. Upper, middle, and lower halves of the table represent 2-stage
anchor-based, 1-stage anchor-free, and 1-stage anchor-based methods, respectively.

Method
A | B | A → C*

All Classes | Large Small | All Classes | All Classes
| CM PF AE NM |

AP50 AP50:95 AP50:95 AP50:95 AP50:95 AP50:95 AP50 AP50:95 AP50 AP50:95

Fast-RCNN 40.6 26.4 41.6 29.8 17.4 25.2 52.3 39.0 57.8 42.3
Faster-RCNN 42.3 27.7 40.4 31.8 18.9 24.2 54.4 40.4 60.6 43.7
Unbiased Teacher 50.1 24.4 46.3 28.6 22.2 28.9 52.5 38.9 59.2 42.4
Soft Teacher 47.0 31.7 43.8 35.7 21.2 22.8 56.8 46.2 65.9 51.3
YOLOv8 45.2 30.2 41.3 33.7 24.5 21.0 55.2 39.8 61.5 43.2
DETR 46.8 31.2 43.0 35.2 27.4 25.4 57.6 41.4 63.4 45.4
Dense Teacher 49.5 33.6 45.0 37.3 28.6 26.1 68.2 52.0 75.5 57.4
Semi-DETR 52.4 35.9 47.3 39.0 29.8 28.6 70.8 54.5 77.8 59.2
SSD 53.5 34.2 43.5 35.1 27.4 31.0 66.4 52.3 77.4 55.2
RetinaNet 56.1 40.5 45.2 38.2 31.2 33.3 69.3 54.3 79.4 58.0
AnoMedS 61.2 43.2 51.6 46.2 32.4 35.2 73.8 58.1 78.6 61.5
Efficient Teacher 75.5 46.5 56.1 50.1 42.5 43.9 78.0 62.8 81.5 68.7
Mean Teacher 73.6 45.9 55.8 49.4 41.0 39.3 79.6 61.8 85.2 64.4
AnoMedR18 74.4 49.2 58.3 51.6 42.1 44.4 81.9 65.8 84.6 70.0
AnoMed 76.8 51.4 59.4 54.8 44.3 46.1 82.2 67.0 86.6 71.6

Note: * indicates out-of-distribution transfer learning, respectively. S indicates the supervised coun-
terpart, and R18 represents AnoMed with ResNet18 encoder.

Fig. 4: Ablation of backbones showing effectiveness of SIB with ResNet50.

TBX11K: From Table 1, we note that AnoMed outperforms all the baselines
with an improvement of 2.6 AP50 and 4.2 AP50:95 over Mean Tr. and Efficient
Tr.. Improvement is more significant in AP50:95. That means, for AnoMed, the
confidence score of predicted bounding boxes are higher than the baselines. Fig 3
shows that Efficient Tr. struggles with the bias induced by majority class A
(Active TB), Unbiased Tr. outputs sparse predictions.

Out of Distribution (OOD) Fine-tuning on B-Fract: OOD fine-tuning
on B-Fract dataset allows AnoMed to generalize on unseen data. As reported in
the Table 1, AnoMed gains AP50:95 of 3.4 and 5.2 over Efficient Tr and Mean
Tr.. Efficient Tr. produces a comparable AP50 but AP50:95 is poor. Due to PL
uncertainty these models often fail to detect minute fractures. In Fig 3) while,
Semi-DETR predicts the bone joint that resembles a fracture, AnoMed precisely
detects with 0.8 confidence.
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Fig. 5: Interpretation of effect of proposed modules on TBX11K.

Table 2: Ablation study of contribution of dif-
ferent modules (results in AP50:95). ✓= in use.
Resnet18 ✓
Resnet50 ✓ ✓ ✓ ✓ ✓ ✓ ✓
2EDMs ✓
3EDMs ✓ ✓ ✓ ✓
4EDMs ✓
Acw ✓ ✓ ✓
PLO ✓ ✓
DA ✓
VinDr 38.5 39.7 41.27 44.7 45.6 46.5 48.1 51.4
TBX11K 56.4 58.3 58.6 59.2 60.1 62.6 64.3 67.0

Table 3: Ablation of different
threshold values in PLO.
t2 t1 VinDr-CXR TBX11K
0.2 0.5 34.6 52.3
0.2 0.6 39.5 63.4
0.2 0.7 48.7 48.9
0.3 0.5 49.3 62.8
0.3 0.6 50.3 65.0
0.3 0.7 51.4 67.0
0.4 0.5 45.4 50.5
0.4 0.6 46.8 51.5
0.4 0.7 45.5 53.4.5

5 Ablation Studies

Backbone Analysis: Fig 4 presents the impact of SIB with ResNet50 encoder
over FPN and Aug-FPN. FPN fails to attend the minority class, while Aug-
FPN seems to overfit due to deep supervision based approach. Comparatively
SIB detects the minority class well and predicts the b-boxes with confidence 0.9
and 0.8 for major and minority class.

Depth Analysis of SIB: As presented in Table 2, with 3 EDMs AnoMed
achieves a significant improvement of 5% and 1% on VinDr and TBX11K, re-
spectively. While 4 EDMs increases the performance marginally, we choose 3 for
computational efficiency. However, no of EDMs can be adjusted as per need.

Threshold Analysis in PLO: As reported in Table 3, for VinDr and
TBX11K the optimal combination is t1 = 0.7, t2 = 0.3. Contribution of PLO
with best setting is shown in 5. As we lower the value of t1, AP50:95 decreases.
With low t1 and t2 values, PLs with less confidence score are treated as the con-
fident PLs and guided to the unsupervised MSE loss as mentioned in equation 5.
This results in severe PL inconsistency.

Contribution of Distribution Alignment: As reported in Table 2 Distri-
bution Alignment (DA) increases the performance by 3.3% and 2.7% of AP50:95

on VinDr and TBX11K, respectively. Qualitative results are shown in Fig 6.

6 Conclusion

In summary, AnoMed stands out as a pioneering effort in PL based SS cardiac
disease detection. Proposed SIB learns scale-invariant features through multi-
layer EDMs and PLO with uncertainty aware un-supervision, guides hesitant PLs
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Fig. 6: Effect of distribution alignment (DA). In semi supervised settings,
DA allows the model exploit the maximum information from the unlabeled data
and aligns the distribution of labeled and unlabeled data during PL based SS
training. It makes model robust to noise also.

towards confident and consistent learning. AnoMed outputs precise detection of
large to small anomalies in CXRs and generalizes well in OOD data as well.
We also recognize the rise of Fourier Transformer based methods for local to
global learning. In future work, we will extend our strategy by encoding the
concept of discrete and continuous space based learning in the same consistency
regularization SS problem setting.

7 Disclosure of Interests

The authors have no competing interests to declare that are relevant to the
content of this article.

References

1. Chakraborty, S., Kumar, K., Tadepalli, K., Pailla, B.R., Roy, S.: Unleashing the
power of explainable ai: sepsis sentinel’s clinical assistant for early sepsis identifi-
cation. Multimedia Tools and Applications pp. 1–29 (2023)

2. Gorade, V., Mittal, S., Singhal, R.: Pacl: Patient-aware contrastive learning
through metadata refinement for generalized early disease diagnosis. Computers
in Biology and Medicine 167, 107569 (2023)

3. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: Augfpn: Improving multi-scale
feature learning for object detection (2019)

4. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (Oct 2017)

5. Kumar, K., Chakraborty, S., Tadepalli, K., Roy, S.: Weakly supervised learning
based bone abnormality detection from musculoskeletal x-rays. Multimedia Tools
and Applications pp. 1–26 (2024)

6. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.:
Feature pyramid networks for object detection. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 936–944 (2017).
https://doi.org/10.1109/CVPR.2017.106

7. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part
I 14. pp. 21–37. Springer (2016)



10 Abhijit Das et al.

8. Liu, Y., Ma, C., He, Z., Kuo, C., Chen, K., Zhang, P., Wu, B., Kira, Z., Vajda, P.:
Unbiased teacher for semi-supervised object detection. CoRR abs/2102.09480
(2021), https://arxiv.org/abs/2102.09480

9. Muhammad, M.B., Yeasin, M.: Eigen-cam: Class activation map using princi-
pal components. In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE (Jul 2020). https://doi.org/10.1109/ijcnn48605.2020.9206626,
http://dx.doi.org/10.1109/IJCNN48605.2020.9206626

10. Nguyen, A.T., Tran, T., Gal, Y., Torr, P.H.S., Baydin, A.G.: Kl guided domain
adaptation (2022)

11. Nguyen, H.Q., Lam, K., Le, L.T., Pham, H.H., Tran, D.Q., Nguyen, D.B., Le,
D.D., Pham, C.M., Tong, H.T.T., Dinh, D.H., Do, C.D., Doan, L.T., Nguyen,
C.N., Nguyen, B.T., Nguyen, Q.V., Hoang, A.D., Phan, H.N., Nguyen, A.T., Ho,
P.H., Ngo, D.T., Nguyen, N.T., Nguyen, N.T., Dao, M., Vu, V.: Vindr-cxr: An
open dataset of chest x-rays with radiologist’s annotations (2022)

12. Pan, C., Zhao, G., Fang, J., Qi, B., Liu, J., Fang, C., Zhang, D., Li, J., Yu, Y.:
Computer-aided tuberculosis diagnosis with attribute reasoning assistance (2022)

13. Pang, Y., Wang, T., Anwer, R.M., Khan, F.S., Shao, L.: Efficient featurized im-
age pyramid network for single shot detector. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 7328–7336 (2019).
https://doi.org/10.1109/CVPR.2019.00751

14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection (2016)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

16. Singh, A., Gorade, V., Mishra, D.: Optiml: Dense semantic invariance using op-
timal transport for self-supervised medical image representation. arXiv preprint
arXiv:2404.11868 (2024)

17. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results (2018)

18. Vyas, N., Saxena, S., Voice, T.: Learning soft labels via meta learning (2020)
19. Wang, W., Huang, W., Lu, Q., Chen, J., Zhang, M., Qiao, J., Zhang, Y.: Attention

mechanism-based deep learning method for hairline fracture detection in hand x-
rays. Neural Computing and Applications 34(21), 18773–18785 (2022)

20. Xu, B., Chen, M., Guan, W., Hu, L.: Efficient teacher: Semi-supervised object
detection for yolov5 (2023)

21. Xu, M., Zhang, Z., Hu, H., Wang, J., Wang, L., Wei, F., Bai, X., Liu, Z.: End-to-end
semi-supervised object detection with soft teacher. Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

22. Zhang, J., Lin, X., Zhang, W., Wang, K., Tan, X., Han, J., Ding, E., Wang, J.,
Li, G.: Semi-detr: Semi-supervised object detection with detection transformers.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 23809–23818 (2023)

23. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based
and anchor-free detection via adaptive training sample selection (2020)

24. Zhou, H., Ge, Z., Liu, S., Mao, W., Li, Z., Yu, H., Sun, J.: Dense teacher: Dense
pseudo-labels for semi-supervised object detection (2022)

25. Zhu, B., Wang, J., Jiang, Z., Zong, F., Liu, S., Li, Z., Sun, J.: Autoassign: Differ-
entiable label assignment for dense object detection (2020)


