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Abstract. Fetal cortical surface reconstruction is crucial for quantitative analysis 
of normal and abnormal prenatal brain development. While there are many cor-
tical surface reconstruction methods available for adults and infants, there re-
mains a notable scarcity of dedicated techniques for fetal cortical surface recon-
struction. Of note, fetal brain MR images present unique challenges, character-
ized by nonuniform low tissue contrast associated with extremely rapid brain de-
velopment and folding during the prenatal stages and low imaging resolution, as 
well as susceptibility to severe motion artifacts. Moreover, the smaller size of 
fetal brains results in much narrower cortical ribbons and sulci. Consequently, 
the fetal cortical surfaces are more prone to be influenced by partial volume ef-
fects and tissue boundary ambiguities. In this work, we develop a multi-task, pri-
ori-knowledge supervised fetal cortical surface reconstruction method based on 
deep learning. Our method incorporates a cycle-consistent strategy, utilizing 
prior knowledge and multiple stationary velocity fields to enhance its represen-
tation capabilities, enabling effective learning of diffeomorphic deformations 
from the template surface mesh to the inner and outer surfaces. Specifically, our 
framework involves iteratively refining both inner and outer surfaces in a cyclical 
manner by mutually guiding each other, thus improving accuracy especially for 
ambiguous and challenging cortical regions. Evaluation on a fetal MRI dataset 
with 83 subjects shows the superiority of our method with a geometric error of 
0.229 ± 0.047 mm and 0.023 ± 0.058% self-intersecting faces, indicating prom-
ising surface geometric and topological accuracy. These results demonstrate a 
great advancement over state-of-the-art deep learning methods, while maintain-
ing high computational efficiency.  
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1 Introduction 

Cortical surface reconstruction (CSR) aims to generate the mesh-represented surfaces 
of the thin, convoluted cerebral cortex from brain magnetic resonance images (MRI), 
including inner (white matter) and outer (pial) cortical surfaces [1]. The inner cortical 
surface represents the interface between the cortical gray matter (GM) and white matter 
(WM), while the outer surface represents the interface between the cerebrospinal fluid 
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(CSF) and GM. CSR is thus of vital importance for surface-based neuroimaging anal-
yses. Traditional CSR approaches usually employ empirically defined computational 
pipelines, which typically consist of two main steps [2]. The first step is to reconstruct 
the inner cortical surface, involving the correction of topological errors in the seg-
mented WM and generating the inner surface using classic tessellation methods, such 
as the Marching Cubes algorithm [3] and its variants [4]. The second step is to recon-
struct the outer surface based on the inner surface. This is achieved by deforming the 
inner surface to the GM/CSF boundary with an effective deformation strategy, which 
needs to overcome challenges that opposing sulcal banks could be closer than the MRI 
resolution, while avoiding surface mesh self-intersection. Various CSR pipelines for 
neuroimaging analysis have been developed and widely utilized, such as FreeSurfer 
[5], BrainSuite [6], dHCP pipeline [7], and iBEAT v2.0 [8]. However, these pipelines 
share a common limitation in terms of computational efficiency. 

Recently, several deep learning-based methods have emerged for cortical surface re-
construction with high efficiency. Cruz et al. [9] introduced the DeepCSR framework, 
which predicts implicit surface representations utilizing occupancy fields and signed 
distance functions (SDFs). Other methods such as CortexODE [10] and SurfNN [11] 
deform an initial surface reconstructed from a tissue segmentation map following sub-
cortical filling and topology correction. Recent approaches [12-14] directly initiate de-
formation either from a convex hull or an inflated white matter/inner surface, e.g., Cor-
ticalFlow [12], CorticalFlow++ [13], and CoTAN [14]. However, these methods pri-
marily target adults or neonates and are not fully suitable for fetuses for the following 
reasons. 1) Deep learning-based approaches heavily rely on training data, while fetal 
brain MRI scans are very challenging to acquire and are often of lower quantity and 
quality compared to those of adults and neonates. As shown in Fig. 1, fetal brain MRI 
exhibits lower image resolution and severer partial volume effects compared to adults 
and infants. 2) Noise in fetal MRI is often apparent, stemming from unavoidable motion 
artifacts. Therefore, purely relying on local features for deformation prediction is more 
challenging in fetal MRI. 3) During the prenatal period, the cerebral cortex undergoes 
exceptionally rapid development and folding, transitioning from a smooth shape to a 
highly convoluted structure. This leads to significant variations in cortical shape and 
size across ages and subjects, resulting in difficulties in learning deformation predic-
tion. 4) The smaller size of fetal brains results in much narrower cortical ribbons and 
sulci. Consequently, the fetal cortical surfaces are more prone to be influenced by par-
tial volume effects and ambiguities in image appearances. 

 To overcome the challenges mentioned above, we propose a novel approach for fetal 
cortical surface reconstruction, leveraging large neonatal data for pretraining to improv-
ing the network training, multi-task learning to fully explore the contextual information, 
and prior knowledge supervision to alleviate the ambiguity in representation learning 
(see Fig. 2). Specifically, our framework incorporates a cycle-consistent strategy, 
which involves stepwise deformation of an initial smooth template mesh to sequentially 
align inner and outer surfaces. Then, it iteratively refines both surfaces in a cyclical 
manner by mutually guiding each other, thus improving accuracy especially for ambig-
uous and challenging cortical regions. Furthermore, our method simultaneously pre-
dicts the signed distance function (SDF) and tissue map. Integrating these tasks into a 
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unified framework greatly improves the accuracy and robustness of fetal cortical sur-
face reconstruction, even with limited and lower-quality fetal brain MRI data. 

 
Fig. 1. Left: adult brain T1w MRI from the ADNI dataset [15]. Middle: neonatal brain T2w MRI 
from the dHCP dataset [16]. Right: fetal brain T2w MRI. 

2 Method 

Overview. We develop a multi-task, priori-knowledge supervised, and cycle-consistent 
framework for fetal cortical surface reconstruction. Specifically, this framework incor-
porates a cycle-consistent strategy, utilizing prior knowledge and multiple stationary 
velocity fields (SVFs) to enhance its representation capabilities, enabling precise learn-
ing of deformations from the template surface to the inner and outer surfaces, as illus-
trated in Fig. 2. The framework takes a 3D reconstructed fetal brain MRI scan and a 
surface mesh template as the initial input, predicting diffeomorphic deformation fields 
from the template to the inner surface and from the inner surface to the outer surface. 
Simultaneously, it estimates the corresponding signed distance function (SDF) for brain 
tissue segmentation. Based on the initial prediction results, we further employ an itera-
tive computational loop between the inner surface and outer surface to improve the 
overall accuracy of the reconstruction. Due to the GPU memory limitation, we limit the 
number of iterations to 2 in this work. 

Pretraining Strategy. To address the challenge of limited availability of fetal MRI 
data, we adopt a pretraining strategy to mitigate this scarcity. During the pretraining 
phase, we pretrained our deformation network using the public dHCP preterm and term 
neonatal 3D MRI dataset (877 subjects) [7]. This neonatal dataset includes early devel-
oping brains from 27 to 45 postmenstrual weeks, thus enabling our model to effectively 
learn dynamic cortical folding patterns during the perinatal stage. This foundational 
training facilitated capturing crucial structural characteristics and variation patterns es-
sential for accurate fetal cortical surface modeling. Furthermore, the pretraining phase 
equipped the model with generalizable feature representations, pivotal for robust infer-
ence and adaptation to various fetal scans. This strategy not only accelerated conver-
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gence during model refinement, but also enhanced reconstruction accuracy, outper-
forming conventional methods by mitigating the risk of overfitting to limited, low-qual-
ity fetal data. 

Cycle-consistent Refinement. To tackle the intrinsic difficulty arising from the low 
contrast in fetal images and the ambiguous tissue boundaries, we introduce a cycle-
consistent learning strategy, as shown in Fig. 2(a). This strategy involves iteratively 
refining predicted deformation fields by considering the intricate relationship between 
the inner surface and outer surface. Instead of predicting the large deformation in a 
single step, we break down the substantial deformation into a series of smaller adjust-
ments. By leveraging the inherent relationship between the inner surface and outer sur-
face, we effectively guide the network’s deformation field converging to a more precise 
position, so as to compensate for ambiguities associated with poor image quality. The 
diffeomorphic deformation flow is estimated at each iteration, which is parameterized 
by several conditional time-varying velocity fields (CTVF) [14] 𝑣𝑣𝑡𝑡. The diffeomorphic 
deformation flow can then be computed by solving the following ordinary differential 
equation (ODE) [10,12,13,17,18,19,20]: 

 ∂
∂𝑡𝑡
𝜙𝜙𝑡𝑡 = 𝑣𝑣𝑡𝑡(𝜙𝜙𝑡𝑡) (1) 

where 𝜙𝜙𝑡𝑡 and 𝑣𝑣𝑡𝑡  denote the diffeomorphic deformation and CTVF at time 𝑡𝑡 ∈ [0,𝑇𝑇]. 
For each iteration 𝑖𝑖, given the initial surface 𝑆𝑆0𝑖𝑖  with points 𝑥𝑥0𝑖𝑖 ∈ 𝑆𝑆0𝑖𝑖 , and the estimated 
diffeomorphic flow 𝜙𝜙𝑇𝑇

𝑖𝑖 , we compute the deformed points 𝑥𝑥𝑇𝑇𝑖𝑖  = 𝜙𝜙𝑇𝑇
𝑖𝑖 (𝑥𝑥0𝑖𝑖 ) on the de-

formed surface 𝑆𝑆𝑇𝑇𝑖𝑖 = 𝜙𝜙𝑇𝑇
𝑖𝑖 (𝑆𝑆0𝑖𝑖 ). It is important to note that in the first iteration, only the 

T2-weighted MRI serves as input. In subsequent iterations, the model input expands to 
include the Signed Distance Function (SDF) output from the previous iteration. For-
mally, 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝜙𝜙𝑇𝑇

𝑖𝑖 = ℱ𝑖𝑖(𝐼𝐼, 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−1), with 𝑆𝑆𝑆𝑆𝑆𝑆0 = 0, where ℱ𝑖𝑖  represents the 𝑖𝑖-th de-
formation network and 𝐼𝐼 denotes the input T2-weighted image. 

Multi-task Priori-knowledge based Deformation Network. Each component of our 
deformation network consists of two branches: one dedicated to predicting the flow 
field and the other dedicated to predicting the segmentation mask. The incorporation of 
brain tissue segmentation as an auxiliary task endows the highly correlated segmenta-
tion and deformation prediction tasks to interact with each other to improve the network 
learning for the models with anatomy-awareness, facilitating superior capturing of cor-
tical boundaries and preventing the prediction of surfaces with artifacts. Notably, our 
tissue map is computed by a signed distance function, which represents an implicit sur-
face. The SDF encodes rich anatomical information (e.g., the relative position and 
shape information), thus aiding in the reconstruction of high-quality surfaces. Our de-
formation network adopts a 3D UNet-like structure, simultaneously predicting a signed 
distance function feature map and multiple stationary velocity fields (SVFs). To address 
the challenge of accommodating large deformations, while maintaining architectural 
simplicity, we extract feature maps at 𝐾𝐾 resolution levels. Subsequently, we upsample 
multi-scale feature maps and learn 𝑁𝑁 volumetric SVFs for each resolution. Considering 
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the high variation between fetal brains, we encode the gestational age (GA) as a condi-
tioning variable in our network, as in CoTAN [14]. This allows learning knowledge-
conditioned attention map to adaptively adjust the weight of each SVF [14]. Thus, the 
integration of these weighted SVFs results in a refined and precise learning of the de-
formation field. To elaborate, as illustrated in Fig. 2(b), a Fully Connected Network 
(FCN) is employed to encode GA 𝑎𝑎 into one (𝐾𝐾 × 𝑁𝑁) × 1 feature vector. Following 
reshaping and SoftMax activation, the FCN produces an attention map. Subsequently, 
a conditional deformation field is predicted by calculating the weighted sum of all SVFs 
and the attention map. This mechanism thus facilitates individualized deformation for 
different subjects. 

 
Fig. 2. Overview of our framework. (a) Cycle-consistent fetal cortical surface reconstruction 
pipeline. The deformation network first deforms from a template surface to the inner surface and 
then to the outer surface as initial prediction. Subsequently, the cycle improves the deformation 
in iterative steps to refine both by mutually guiding each other. (b) The architecture of the defor-
mation network in our framework. Given a fetal brain MRI volume and a template surface, the 
deformation network learns to predict signed distance function (SDF) and then uses Heaviside 
function to compute the segmentation mask. Simultaneously, a priori knowledge-conditioned at-
tention map, encoding by age 𝑎𝑎 , guides the weighting of multiple stationary velocity fields 
(SVFs). By integrating these SVFs, the network produces a robust deformation field, leading to 
accurate fetal cortical surfaces. 

Loss Function. In our approach, we design a comprehensive loss function, encompass-
ing a surface space loss ℒ𝑆𝑆 and an image space loss ℒ𝐼𝐼, balanced by a hyperparameter 
λ: 

 ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  ℒ𝑆𝑆 + 𝜆𝜆ℒ𝐼𝐼  (2) 

Image Space Loss. The image space loss ℒ𝐼𝐼 is a combination of signed distance loss 
and segmentation loss, weighted by 𝛼𝛼, which serves as an auxiliary task: 

 ℒ𝐼𝐼 =  ℒ𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛼𝛼ℒ𝑆𝑆𝑆𝑆𝑆𝑆 (3) 

The component of  ℒ𝑆𝑆𝑆𝑆𝑆𝑆 =  ℒ1 + ℒ𝑆𝑆𝑆𝑆  includes the ℒ1 term ensuring the similarity be-
tween the predicted implicit surface and the ground truth implicit surface, while the ℒ𝑆𝑆𝑆𝑆  
term acts as a double constraint—a smooth constraint for the reconstructed surface and 
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a structure constraint for the predicted implicit surface. Specifically, we extract the ex-
plicit surface from the predicted SDF (implicit surface) of the first branch and then 
compute the Chamfer distance with the reconstructed surface of the second branch. 
Additionally, the ℒ𝑆𝑆𝑆𝑆𝑆𝑆 supervises the overlapping between the predicted segmentation 
(obtained from SDF using the Heaviside function) and the ground truth segmentation, 
defined through the Dice loss.  

Surface Space Loss. The ℒ𝑆𝑆 term is dedicated to surface reconstruction. In the initial 
iteration (𝑖𝑖 = 1) for inner surface reconstruction, ℒ𝑆𝑆 = ℒ𝑐𝑐𝑐𝑐 + 𝛾𝛾ℒ𝑡𝑡𝑡𝑡𝑙𝑙 + 𝛿𝛿ℒ𝑛𝑛𝑐𝑐. Here, ℒ𝑐𝑐𝑐𝑐 
computes the distance between two surfaces, using the Chamfer distance loss [21-24], 
the Laplacian loss ℒ𝑡𝑡𝑡𝑡𝑙𝑙 regularizes the smoothness of the surface mesh, and the normal 
consistency loss ℒ𝑛𝑛𝑐𝑐 constrains the cosine similarity between the normals of two adja-
cent faces, as in CoTAN [14]. For subsequent iterations (𝑖𝑖 > 1), ℒ𝑆𝑆 transitions to only 
using the Chamfer distance loss. The outer surface reconstruction employs the Chamfer 
distance loss throughout iterations. 

3 Experiments 

Dataset and Implementation Details. Our framework was evaluated on a 3D recon-
structed fetal brain MRI dataset consisting of 83 subjects ranging from 21 to 35 weeks 
of gestation. We divided the dataset into training, validation, and testing sets with a 
ratio of 6:1:3. The MRI volumes were affinely aligned to the MNI152 template and 
clipped to a size of 176 × 224 × 160 at 1 mm³ isotropic resolution. To generate pseudo-
ground truth cortical surface meshes, we first generated initial tissue segmentation maps 
[25] and further extensively manually corrected them and then reconstructed the inner 
and outer surfaces using a deformable surface model [26]. During our training phase, 
the hyperparameters 𝜆𝜆 and 𝛼𝛼 were set to 1 × 10−4 and 1, respectively. Our network was 
trained sequentially, with parameters frozen after the first iteration and subsequent it-
erations initiated. We employed the Adam optimizer with an initial learning rate setting 
to 1 × 10−5, and the weights 𝛾𝛾 = 0.5 and 𝛿𝛿 = 5 × 10−4. 

Comparative Results. For validation, we first performed ablation studies to ensure the 
effectiveness of each part of our method. To demonstrate the advantage of our ap-
proach, we compared with the most recent learning-based cortical surface reconstruc-
tion approaches, including CortexODE [10] and CoTAN [14], as these methods can 
well reconstruct neonatal cortical surfaces. To measure geometric accuracy of recon-
structed cortical surfaces, we employ two metrics [9]: average symmetric surface dis-
tance (ASSD) and Hausdorff distance (HD). The ASSD provides an assessment of the 
average distance between two surfaces. This involves sampling a batch of points on one 
surface and calculating the mean distance between these points and their corresponding 
points on the other surface. The process is then reciprocated, resulting in the final ASSD 
as the average of these mean distances. Simultaneously, the HD metric computes the 
maximum distance between two surfaces, with an emphasis on robustness achieved by 
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computing the 90th percentile distance rather than the maximum value, as suggested by 
[9] and [12]. In addition, the topology quality of the reconstructed cortical surfaces will 
be evaluated using the ratio of self-intersecting faces (SIF). 
    Experimental results in Table 1 indicate that our method yields an ASSD of 0.2275 
mm for the left hemisphere and 0.2285 mm for the right hemisphere for the pial/outer 
surface. For the inner surface, our method yields an ASSD of 0.2581 mm for the left 
hemisphere and 0.2627 mm for the right hemisphere. In contrast, CortexODE exhibits 
an average ASSD of 0.2821 mm for the left hemisphere and 0.3126 mm for the right 
hemisphere for the pial surface. For the inner surface, CortexODE yields an average 
ASSD of 0.3027 mm for the left hemisphere and 0.3512 mm for the right hemisphere. 
These results indicate a substantial improvement in ASSD, comparing our method with 
CortexODE, while CoTAN shows clear improvements in ASSD and HD for both inner 
and pial surfaces compared with CortexODE, it still falls short of our method. Fig. 3 
shows representative cases for a visual comparison at various ages. Our method con-
sistently produces more accurate and smoother surfaces with fewer self-intersecting 
faces, despite the influence of poor quality and low contrast in fetal MRI scans. 

 
Fig. 3. Visual comparison of cortical inner and outer surfaces reconstructed by various methods 
across ages. Blue color indicates under-deformation error distance, while red color indicates 
over-deformation error distance. 

Ablation Study. We conducted an ablation study to assess the effects of the signed 
distance function branch and the use of a cycle-consistent strategy on surface recon-
struction performance. Quantitative results for different settings are presented in Table 
2. It is evident that our cycle-consistent strategy reduces errors in CSR from fetal brain 
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MRIs. The signed distance function branch, while contributing only slightly to quanti-
tative results, has a more substantial impact on the visual quality of the generated sur-
faces, notably reducing topology errors in predictions when visually examined in the 
testing data. Furthermore, the incorporation of the cycle-consistent refinement learning 
strategy yields noticeable additional improvements, underscoring its effectiveness in 
deformation learning. These error distance maps, computed by measuring the distance 
of each vertex on the predicted surface to its nearest counterpart on the ground truth 
surface, provide valuable insights into geometric errors.  

Table 1. Comparison of different CSR methods in reconstructing the inner and pial surfaces of 
the left (L) and right (R) hemispheres. Values are mean ± std over all subjects. 

Inner Surface 

 
ASSD (mm) HD (mm) SIF (%) 

L R L R L R 

CortexODE 0.3027±0.1252 0.3512±0.1164 0.7413±0.4125 0.8276±0.3350 0.6720±1.0608 0.0104±0.0247 

CoTAN 0.2673±0.0712 0.2738±0.0609 0.6145±0.2511 0.6085±0.1462 0.0389±0.1451 0.0135±0.0164 
Ours 0.2581±0.0705 0.2627±0.0602 0.5939±0.2528 0.5875±0.1511 0.0251±0.0973 0.0063±0.0169 

Pial Surface 

 
ASSD (mm) HD (mm) SIF (%) 

L R L R L R 

CortexODE 0.2821±0.1200 0.3126±0.1278 0.6786±0.4124 0.7503±0.3958 0.4111±0.5247 0.2284±0.2166 

CoTAN 0.2326±0.0622 0.2431±0.0590 0.4917±0.1519 0.5079±0.1200 0.0492±0.1655 0.0297±0.0333 

Ours 0.2275±0.0638 0.2285±0.0470 0.4820±0.1545 0.4768±0.1055 0.0566±0.1817 0.0228±0.0584 

Table 2. Cortical surface reconstruction performance with respect to signed distance function 
branch (SDF and Seg) and cycle-consistent strategy. Left (L) and right (R) hemispheres of the 
inner and pial surfaces are compared separately. Values are mean ± std over all subjects. 

    SDF  √ √ √ 
  Seg   √ √ 
  Cycle-consistent    √ 

ASSD 
(mm) 

Inner 
L 0.2707±0.0716 0.2675±0.0704 0.2679±0.0698 0.2581±0.0705 
R 0.2819±0.0662 0.2671±0.0556 0.2663±0.0538 0.2627±0.0602 

Pial 
L 0.2280±0.0630 0.2262±0.0613 0.2244±0.0611 0.2275±0.0638 
R 0.2325±0.0489 0.2336±0.0494 0.2306±0.0455 0.2285±0.0470 

HD90 
(mm) 

Inner 
L 0.6250±0.2398 0.6198±0.2557 0.6045±0.2272 0.5939±0.2528 
R 0.6494±0.1898 0.5894±0.1399 0.5867±0.1319 0.5875±0.1511 

Pial 
L 0.4815±0.1481 0.4723±0.1380 0.4673±0.1260 0.4820±0.1545 
R 0.4957±0.1245 0.4874±0.1089 0.4819±0.0986 0.4768±0.1055 

SIF 
(%) 

Inner 
L 0.0125±0.0483 0.0424±0.1670 0.0125±0.0483 0.0251±0.0973 
R 0.0053±0.0096 0.0038±0.0105 0.0053±0.0096 0.0063±0.0169 

Pial 
L 0.0381±0.1311 0.0700±0.2180 0.0381±0.1311 0.0566±0.1817 
R 0.0441±0.0621 0.0277±0.0635 0.0441±0.0621 0.0228±0.0584 
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4 Conclusion 

In this study, we introduce a novel cycle-consistent, diffeomorphic flow-based method 
for reconstruction of fetal cortical surfaces, which facilitates precise analysis of fetal 
cortical development and early, better detection of neurodevelopmental anomalies. To 
tackle the challenges stemming from the rapid changes during the prenatal period and 
the low contrast of MRI scans, we present a refinement learning strategy that ensures 
cycle consistency. This strategy involves gradually deforming a surface mesh template 
towards the inner surface and subsequently towards the pial surface, followed by itera-
tive cyclical refinement. Experiments on the demanding task of cortical surface recon-
struction using fetal brain MRI data demonstrate the superiority of our approach. Our 
method achieves significant improvements in mesh quality and reduction of geometric 
errors, compared to state-of-the-art deep learning methods, while maintaining high 
computational efficiency, i.e., 0.3 seconds for each hemisphere. Further improvements 
can be realized through the incorporation of advanced post-processing methods and 
novel loss functions to further reduce the SIF ratio and enhance surface quality. In fu-
ture, we will also comprehensively evaluate our method on larger cohorts of fetal scans. 
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