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Abstract. Developing models that are capable of answering questions
of the form “How would x change if y had been z?” is fundamental to ad-
vancing medical image analysis. Training causal generative models that
address such counterfactual questions, though, currently requires that all
relevant variables have been observed and that the corresponding labels
are available in the training data. However, clinical data may not have
complete records for all patients and state of the art causal generative
models are unable to take full advantage of this. We thus develop, for the
first time, a semi-supervised deep causal generative model that exploits
the causal relationships between variables to maximise the use of all avail-
able data. We explore this in the setting where each sample is either fully
labelled or fully unlabelled, as well as the more clinically realistic case of
having different labels missing for each sample. We leverage techniques
from causal inference to infer missing values and subsequently generate
realistic counterfactuals, even for samples with incomplete labels. Code
is available at: https://github.com/yi249/ssl-causal
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1 Introduction

The deployment of deep learning models to real-world applications faces a variety
of challenges [16], with many arguing that this is due to lack of causal considera-
tions [4,18]. A growing research area is the generation of counterfactuals (CFs),
the manifestation of a sample in an alternative world where an upstream variable
has been changed [10,17,21]. Such techniques are particularly useful in medical
image analysis, where models are often hampered by lack of diversity in training
data [5], so methods to generate realistic synthetic samples from underrepre-
sented classes are critical [13]. Incorporating structural causal equations into a
deep learning framework has been shown to provide a powerful tool for coun-
terfactual generation [17]. These ideas were extended by the development of a
hierarchical VAE structure for greater image fidelity [7]. This method consists,
however, of a separately trained generative model and structural causal model,
represented by a directed acyclic graph (DAG), and hence, the two components
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are unable to leverage information from one another during training. Moreover,
these methods rely on fully labelled samples, so are unable to use additional
data where true values are unavailable for some (or all) variables of the causal
graph.

Data with limited labels are ubiquitous, so semi-supervised methods are of par-
ticular interest. A common approach to semi-supervised learning is consistency
regularisation under transformations of the input [1, 11, 22]. Alongside our gen-
erative model, we present this approach from a causal perspective and demon-
strate how it fits naturally into our framework. Semi-supervised methods also
have a causal motivation [19] due to the principle of independence of cause and
mechanism (ICM) [18], which suggests that possessing information on the effect
(image) alone is beneficial for learning the joint distribution of cause (labels)
and effect. In summary, we make the following contributions:

– Introduce a semi-supervised deep causal generative model,

– Generate and evaluate counterfactuals with missing causal variables,

– Provide a causal perspective on the consistency regularisation technique for
semi-supervised learning,

– Inspired by the ICM, investigate the performance of our method when parent
variables are missing versus when child variables are missing.

To illustrate this, we first use a semi-synthetic dataset based on Morpho-MNIST
[6] which allows us to explicitly measure performance given the known underlying
causal relationships. We then assess our method on the MIMIC-CXR dataset
[9, 12] to demonstrate its capabilities on real, more complex, medical data.

2 Background

A (Markovian) Structural Causal Model (SCM) is a 4-tuple [21]:

M = ⟨V,U,F , P (U)⟩

where, V = {v1, . . . , vn} is the set of endogenous variables of interest, U =
{u1, . . . , un} is the set of exogenous (noise) variables, P (U) is the prior distribu-
tion over them, and F = {f1, . . . , fn} is a set of functions assigning values to the
endogenous variables. Moreover, we assume that each endogenous variable, xi,
is assigned deterministically by its direct causes, i.e. its parents pai ⊆ V \ {vi},
and the corresponding noise variable, ui via the structural assignments,

vi := fi(pai, ui). (1)

This supersedes conventional Bayesian approaches as it allows for greater con-
trol by explicitly considering the structural relationships between variables. We
achieve this through the do-operation [3], which makes assignments of the form
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do(xi = a). This disconnects xi from its parents, and we obtain an intervened
distribution over the endogenous variables,

P (V |do(vi = a)) =
∏
j ̸=i

p(vj |paj) · 1{vi=a}

However, such interventions provide only population-level effect estimations [3].
To narrow this down to unit-level and generate counterfactuals for individual
samples, the following procedure is carried out [18]:

1. Abduction: Use the data to update the prior probability on the exogenous
noise p(U) to obtain p(U |V )

2. Action: Perform an intervention do(V = A) to obtain a modified SCM,
denoted by M̃do(V=A).

3. Prediction: Use M̃do(V=A) to estimate the values of the desired variables.

3 Methodology

Fig. 1: Model outline. Green: observed, Grey: latent, Red: predicted, Blue: causal
generative, Yellow: decoding. (left) Training; we use the y predictions for decod-
ing unless they are observed, (right) CF generation.

An overview of our method is shown in Fig. 1. Herein, the endogenous variables
consist of image, x, and variables, y; denoted by y∗ when observed and by y′

when predicted. Latent variables z = z1:L make up part of the exogenous noise
for x, modelled using a hierarchical latent structure, following [7,20]. Our model
extends this structure with a predictive part that infers the endogenous variables,
y, enabling counterfactual generation in the case of missing labels. For clarity, we
limit derivations to the case with a single cause variable, yC , and effect variable,
yE , but this can be extended to any finite number of variables with any causal
structure. The ELBO loss for fully labelled samples drawn from DL is S(x, y):

log pθ(x) ≥ Eqϕ(z|x,yE ,yC)

[
log

pθ(x|z, yE , yC)pθ(z)pθ(yE |yC)pθ(yC)
qϕ(z|x, yE , yC)

]
⇒ S(x, y) := −L(x, y)− log pθ(yE |yC)− log pθ(yC)
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where L(x, y) is the ELBO for a conditional VAE and pθ(·) are (Gaussian) priors.
For the unlabelled samples, drawn from DU , we minimise the loss:

U(x) := −Eqϕ(yE |x)
[
Eqϕ(yC |x,yE)(L(x, y)−DKL{qϕ(yC |x, yE)||pθ(yC)})

]
+DKL{qϕ(yE |x)||pθ(yE |yC)}.

(2)

Here, we predict the labels using y′ ∼ qϕ(y|x) and regularise them via the KL-
divergence with their respective prior pϕ(y). When only cause yC is labelled,
for samples (x, yC) ∈ DC , we minimise the loss:

C(x, yC) := −Eqϕ(yE |x)[L(x, y)]− log pθ(yC) +DKL{qϕ(yE |x)||pθ(yE |yC)}. (3)

When only effect yE is labelled, we minimise the loss:

E(x, yE) := −Eqϕ(yC |x,yE)[L(x, y)+ log pθ(yE |yC)]+DKL{qϕ(yC |x, yE)||pθ(yC)},

for samples (x, yE) ∈ DE . In the case of discrete variables, when the true labels,
y∗, are not provided, we supplement these losses by inversely weighting sam-
ples with missing labels by the entropy of the labels predicted by the encoder,
Hϕ(y

′|x). For example, when yE is missing, we multiply the expectation in (3)
by 1−Hϕ(y

′
E |x). We use entropy here as an indicator for predictive uncertainty,

to inform us how much to ‘trust’ the predicted label.

Under the current construction, the parent predictors, qϕ(yE |x) and qϕ(yC |x, yE),
are only trained when the parent variables are unobserved. To ensure the model
is able to learn a good representation of y, we include additional classification
terms in the supervised loss [14], giving the total loss to train our model:

T (x, y) :=
∑

(x,y)∈DL

S(x, y) +
∑

x∈DU

U(x) +
∑

(x,yC)∈DC

C(x, yC)

+
∑

(x,yE)∈DE

E(x, yE)− E(x,y)∈DL
[log qϕ(yi|y<i, x)]

(4)

In the last term, labeled variables yi are placed in a topological ordering [8]
starting with the root nodes. Thus for all i, the ancestors of yi are a subset of
y<i and its descendants are a subset of y>i. In (2), we see that in the unlabelled
case, we require expectations over the labels. For a single discrete label y, this
can be achieved by summing over all possible values of y [14],

Eqϕ(y|x)[f(y, ·)] =
∑
y

qϕ(y|x) · f(y, ·).

However, this quickly becomes computationally expensive as the number of vari-
ables or classes grows, and is intractable for continuous variables. We avoid using
a Monte-Carlo sampler, where taking more samples leads to similar computa-
tional costs. Instead, we propose lowering this variance by beginning training
using only the labelled data. By doing so, predictors qϕ(·|x) reach a sufficiently
high accuracy before being used to estimate missing labels for the rest of the
data.
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Counterfactual Regularisation To further improve our model, we turn to a
causal treatment of consistency regularisation [22]. For this, we restrict pertur-
bations of the input image to interventions on the DAG governing the causal
variables. For example, for input image x with variables (yC , yE), we alter ef-
fect variable yE via do(yE = ẽ), to obtain new image x̃ with causal variables
(ỹC , ỹE). If the DAG is obeyed, the cause variable should remain invariant to this
perturbation and we can thus impose a loss that penalises divergence between
yC and ỹC . In the context of our model, we predict ỹC ∼ qϕ(·|x̃) and minimise
D(yC , ỹC), where D(·, ·) is an appropriate distance metric. If yC is unknown, we
predict its value using yC ∼ qϕ(·|x). Suppose instead we alter the cause vari-
able; in this case, the effect should change given the DAG. As such, we predict
ỹE ∼ qϕ(·|x̃) and then compute the counterfactual of yE under the proposed in-
tervention on yC . When yE is unlabelled, we first predict it using yE ∼ qϕ(·|x).
This causal interpretation improves the robustness not only of the generative
component of the model, but also the causal inference elements, pθ(yi|y<i).

Counterfactual Generation Once the generative model is trained, we use the
predictive component pθ(yi|y<i) to generate counterfactuals, x̃. For abduction
we require the structural assignments (1) to be invertible in u, so we encode
pθ(yi|y<i) as an invertible gy<i(u), u ∼ p(u), parameterised by the causal parents
y<i [17]. Counterfactual generation can then be expressed as ỹi = gỹ<i

(
g−1
y<i

(yi)
)

so that each counterfactual value can be calculated in sequence. If a label yi is
missing, we use our trained predictor qϕ(yi|x, y>i) to impute it, e.g Fig. 1 (right)
for when yE is unobserved and we intervene on yC .

4 Experiments

Fig. 2: (a) DAG for Colour MorphoMNIST, d: digit, f : foreground (digit) color,
b: background color, t: thickness, i: intensity. (b) DAG for MIMIC-CXR, s: sex,
a: age, d: disease status, r: race. U : respective exogenous noise variables.

4.1 Causal Analysis on Colour Morpho-MNIST

True causal generative processes for medical imaging data are unknown. There-
fore, to evaluate the causal aspects of our method in depth, we first use data
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(a) Supervised vs SSL vs Flexible. (b) SSL+Flexible for very few labels.

Fig. 3: Colour Morpho-MNIST: Accuracy of do(d = k) on random test images for
uniformly random k ∈ {0, . . . , 9}\d where d is the digit of the original image. For
SSL, the x-axis represents to the number of fully labelled samples; for Flexible
it represents the number of labels for each variable across all the samples. For
SSL+Flexible we use 600 randomly allocated labels for each variable in addition
to the number of fully labelled samples denoted by the x-axis.

adapted from Morpho-MNIST (60k training, 10k test samples) [6], considering
the thickness (t) and intensity (i) of each digit. We increase the complexity of
the causal structure by colouring the foreground (f) and background (b), with
each colour drawn from a distribution conditional on the digit (d), as in Fig. 2a.

Counterfactual Effectiveness As baseline, we use the state of the art super-
vised method for counterfactual image generation [7] trained only on the labelled
samples of each experiment. We compare this against our method for a labelled-
unlabelled split (SSL in figures) and for labels missing randomly for each variable
(Flexible). We measure the effectiveness [15] of our counterfactual generations
by abducting and intervening on test images with random interventions before
using classifiers or regressors, q(·|x), trained independently on uncorrelated data,
to measure how well the desired change has been captured.

Table 1: Colour Morpho-MNIST: Log likelihoods (↑) of the child variables.
Colour log likelihoods ∈ (−∞, 2.239], intensity log likelihoods ∈ (−∞, −1.336].

Model Labelled MAE (↓) pθ(f) pθ(b) pθ(i, t) q(f |x̃) q(b|x̃) q(i, t|x̃)

Supervised
1000 3.91 -1.46 -1.49 -38.21 -1.01 -1.17 -32.98
5000 3.84 -1.31 -1.38 -21.38 -0.63 -0.93 -28.44
60,000 3.75 1.20 1.24 -5.55 1.17 1.18 -14.42

SSL
1000 3.85 1.05 1.10 -14.26 0.81 1.08 -26.02
5000 3.83 1.10 1.12 -7.40 1.01 1.19 -22.39

Flexible
1000 3.86 1.11 1.13 -17.93 0.77 1.15 -28.20
5000 3.84 1.14 1.16 -13.98 1.07 1.10 -19.56

Fig. 3a highlights the improvement by our method over the purely supervised
approach. Even when only 1000 samples (∼ 1.67%) are labelled, we achieve near
perfect effectiveness for changed digit counterfactuals. This holds both when
the data is split into distinct labelled-unlabelled sets and when these labels are
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missing randomly. Moreover, in Fig. 3b, counterfactual regularisation improves
performance for very low labelled sample sizes by an average of ∼ 2.2%. Table 1
demonstrates how the causal relationships are learned significantly better using
our method, with regards to both the distributions inferred from the DAG, pθ(·),
and the manifestations of these changes in the counterfactual image, q(·|x̃).

Independence of Cause and Mechanism Inspired by insights on the ICM
[19], we analyse how our method performs in the specific cases of the cause vari-
able missing and the effect present, and vice-versa, by varying the number of
thickness and intensity labels while keeping the others. Table 2 (left) shows that
the settings with greater proportions of intensity (effect) labels tend to produce
better joint distributions, supporting the ICM hypothesis [19]. This is signifi-
cant for domains with limited labelled data such as healthcare, as it suggests
that, given an identified cause-effect relationship and limited capability to obtain
labels, focusing on labelling the effect should provide improved performance.

Table 2: (left) Colour Morpho-MNIST: Cause and mechanism experiment.
(right) MIMIC-CXR: For each intervention do(·), the 3 rows correspond to train-
ing with 10%, 20%, 30% of variables labelled, all using CF regularisation. Semi-
supervision in both settings (SSL, Flexible) outperforms pure supervision (Sup.).

i
labels

t
labels

do(t) do(i)

pθ(i,t) (↑) q(i,t|x̃) (↑) |t− t̃| (↓) |i− ĩ| (↓)

300 2700 -21.84 -29.47 0.089 0.293
600 2400 -18.89 -26.17 0.102 0.203
1200 1800 -18.01 -24.78 0.099 0.221
1500 1500 -19.40 -25.43 0.132 0.172
1800 1200 -16.27 -22.13 0.120 0.161
2400 600 -14.62 -19.32 0.146 0.093
2700 300 -14.15 -17.56 0.152 0.088

Disease (↑) Age (↓) Sex (↑) Race (↑)
Sup. SSL Flex. Sup. SSL Flex. Sup. SSL Flex. Sup. SSL Flex.

do(d)
10% 0.55 0.70 0.71 15.62 9.12 9.19 0.95 0.95 0.94 0.71 0.71 0.68
20% 0.57 0.78 0.77 14.21 8.65 8.52 0.94 0.99 0.99 0.74 0.77 0.77
30% 0.68 0.83 0.84 12.95 8.53 7.82 0.98 1.00 0.95 0.77 0.82 0.81

do(a)
10% 0.87 0.91 0.93 15.01 13.38 13.75 0.90 0.96 0.90 0.72 0.81 0.77
20% 0.87 0.96 0.96 15.40 12.57 13.21 0.94 1.00 0.99 0.71 0.83 0.80
30% 0.90 0.96 0.95 14.26 12.07 12.15 0.98 1.00 1.00 0.78 0.85 0.84

do(s)
10% 0.84 0.91 0.91 14.15 9.31 9.31 0.69 0.97 0.90 0.69 0.74 0.77
20% 0.86 0.97 0.96 13.57 8.25 7.87 0.73 1.00 0.99 0.69 0.80 0.83
30% 0.89 0.97 0.98 12.92 7.99 7.95 0.78 0.99 0.99 0.77 0.80 0.82

do(r)
10% 0.84 0.93 0.95 15.08 9.76 9.73 0.96 0.98 0.95 0.46 0.53 0.52
20% 0.88 0.95 0.95 14.27 7.87 7.79 0.95 1.00 0.99 0.50 0.57 0.56
30% 0.93 0.96 0.97 14.11 7.37 7.61 0.98 1.00 1.00 0.55 0.62 0.63

4.2 Counterfactuals for Medical Imaging Data

To evaluate our method on medical imaging data, we apply it to the MIMIC-
CXR dataset (50k training, 20k test samples) [9, 12]. We assume the casual
structure used in [7] with variables disease (d), age (a), sex (s), race (r), with
the only non-independence being that a causes d (Fig. 2b). For disease, we use
the presence of pleural effusion as a binary variable and we train models using
10%, 20%, 30%, 40% and 50% of the total labels for each of the three mod-
els (Supervised, SSL, Flexible). As the causal structure is simpler, we measure
performance, over 3 seeds, by intervening on each variable separately before mea-
suring the ROCAUC for the discrete variables and the MAE for age.

From the cells on the diagonal of Table 2 (right), we see that our method tends to
improve upon the supervised approach with regards to implementing interven-
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Fig. 4: (a) CF Regularisation on MIMIC-CXR. (b) MIMIC-CXR CFs from model
trained on 40% labels. From top-left: (1) original: white, healthy, 20-year-old
male, (2) do(age=90), (3) do(diseased), (4) do(asian), (5) do(female), (6) do(all).

tions. The other cells are essentially a measure of reconstruction quality, since
they involve evaluating variables that have not been intervened on. As such,
the closeness of these values for the various models suggests that the achieved
counterfactual generation gains are primarily due to differences in the causal in-
ference component. This indicates that it would be fruitful to focus future efforts
on improving this section of the model. This holds for both SSL and Flexible,
demonstrating that practitioners implementing our approach need not prioritise
achieving full labelling for any given sample over collecting as many labels as pos-
sible, bolstering the usability of the model. Fig. 4a demonstrates the increased
interventional accuracy provided by CF regularisation. Moreover, as shown in
Figure 4b, our model is able to exhibit clear visual changes for the various CFs,
indicating the numerical results are not due to minute changes undetectable to
the human eye [2]. To build upon this, an avenue of future research would be
to use this approach to generate additional training data for underrepresented
populations in medical datasets and evaluate how this aids downstream tasks.

5 Conclusion

This study introduces a semi supervised deep causal generative model to enable
training on causal data with missing labels in medical imaging. Experiments on a
coloured Morpho-MNIST dataset, where the whole generative process is known,
along with experiments on real clinical data from MIMIC-CXR, demonstrate
that our approach uses unlabelled and partially labelled data effectively and
improves over the state of the art fully supervised causal generative models. The
key practical contribution of this work is that it enables training causal models
on clinical databases where patient data may have missing labels, which previous
models could not use, relaxing one of the main requirements for training a causal
model. A limitation of our work is that we assume the DAG structure is known
a priori. Hence, if this is misspecified, there are no guarantees on the correctness
of the generated counterfactuals. A possible next step could thus be to explore
cases with limited information on the DAG structure of the causal variables.
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