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Abstract. Video-based Surgical Navigation (VBSN) inside the artic-
ular joint using an arthroscopic camera has proven to have important
clinical benefits in arthroscopy. It works by referencing the anatomy and
instruments with respect to the system of coordinates of a fiducial marker
that is rigidly attached to the bone. In order to overlay surgical plans
on the anatomy, VBSN performs registration of a pre-operative model
with intra-operative data, which is acquired by means of an instrumented
touch probe for surface reconstruction. The downside is that this proce-
dure is typically time-consuming and may cause iatrogenic damage to the
anatomy. Performing anatomy reconstruction by using solely the arthro-
scopic video overcomes these problems but raises new ones, namely the
difficulty in accomplishing keypoint detection and matching in bone and
cartilage regions that are often very low textured. This paper presents
a thorough analysis of the performance of classical and learning-based
approaches for keypoint matching in arthroscopic images acquired in the
knee joint. It is demonstrated that by employing learning-based meth-
ods in such imagery, it becomes possible, for the first time, to perform
registration in the context of VBSN without the aid of any instruments,
i.e., in an instrument-free manner.

Keywords: Instrument-free registration · Surgical navigation · Feature
matching · Arthroscopy

1 Introduction

Video-based Surgical Navigation (VBSN) [17] inside the articular joint has pro-
ven to be effective in overlaying surgical plans with the patient’s anatomy for
guiding the surgeon during arthroscopic procedures. It leverages a fiducial mar-
ker, referred to as the world marker (WM), that is rigidly attached to the
anatomy for determining the pose of the arthroscope at every frame-time in-
stant. Additionally, a probe instrumented with a different fiducial is used to
digitize the bone surface and reconstruct a 3D point for each frame in which
its pose is determined. If both WM and probe are in the field-of-view of the
arthroscope, their relative pose can be determined and reconstructed 3D points
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can be represented in WM coordinates. VBSN further includes a registration
step that aligns a pre-operative model of the bone, which can be obtained from
CT or MRI, with the data acquired intra-operatively. This step is crucial for the
surgical navigation stage as it will enable planning information extracted from
the pre-operative model to be represented in the patient’s anatomy. The quality
of the reconstructed 3D points will impact registration performance. Allied to
the fact that arthroscopic scenarios are challenging, namely because there is lim-
ited maneuverability and visibility inside the joint, there exist floating particles
and tissue, and the arthroscopic lens induces high image distortion, the digitiza-
tion process can become time-consuming and error prone. Additionally, having
to physically touch anatomical parts comes with the risk of causing iatrogenic
damage.

Fig. 1: 3D reconstruction and registration pipeline for assessing the different fea-
ture matching approaches: in an arthroscopic video sequence, pairs of frames
are selected and their relative pose is determined by tracking the WM. Trian-
gulation is then performed and the reconstructed points are represented in WM
coordinates. A final step of 3D registration allows to overlay the pre-operative
mesh model with the patient’s anatomy using augmented reality.

There exist alternative ways of performing surface reconstruction in arthro-
scopic/endoscopic/laparoscopic scenarios without having to touch the patient’s
anatomy. These typically involve structured light, in which light with a known
pattern is projected onto the anatomy and detected by the camera for perform-
ing some type of triangulation [2,12]. Besides not having the risk of damaging
the patient’s anatomy, these solutions typically allow a broader access than the
touch probe, which facilitates the registration process. However, existing de-
signs present several disadvantages: i) they are too large to be inserted into the
arthroscopic portals that typically measure about 6 mm [6], and ii) they must
be constructed and calibrated, which is not a straightforward process [12,18,21].

This paper concerns the problem of performing 3D surface reconstruction
and registration without using any instrumentation for digitization. This brings
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important advantages with respect to the existing approaches that include i) no
risk of causing damage to the anatomy, ii) no need to open larger than usual
portals, iii) accessibility to anatomical regions that cannot be reached with touch
probes or structured light systems and iv) a fast digitization step that only
involves anatomy inspection with the arthroscopic camera. Unfortunately, the
aforementioned difficulties associated with working in arthroscopic environments
become more evident when trying to perform 3D reconstruction solely from
the arthroscopic video, to which the very low texture of bony surfaces is an
added challenge. Previous efforts in performing visual SLAM using arthroscopic
sequences did not provide acceptable results [17].

Recent advances in keypoint matching have demonstrated superior perfor-
mance compared to traditional methods, particularly in textureless environ-
ments [7,22]. Traditional feature matching approaches involve sparse keypoint
and descriptor extraction followed by matching [13]. However, reliable keypoint
extraction remains a challenge when working in low textured scenes, often re-
sulting in very sparse and inaccurate reconstructions. Recently, two approaches
have emerged as robust solutions for textureless scenes: (i) semi-sparse meth-
ods, which do not rely on direct keypoint detection [22], and (ii) dense feature
matching, which captures all matches between views.

This paper assesses, for the first time, the possibility of performing 3D surface
reconstruction and registration in arthroscopic scenes in which the only required
instrumentation is a WM rigidly attached to the anatomy. To properly assess the
performance of state-of-the-art approaches for two-view matching, this assess-
ment is conducted using a straightforward reconstruction pipeline that employs
tracking of the WM for determining the camera motion and simple triangulation
for 3D point reconstruction (Fig. 1). It is demonstrated that despite being a dif-
ficult problem with no solution in the literature, if the camera motion is known,
the recent advances in feature matching enable 3D surface reconstruction in
arthroscopic scenarios with sufficient quality for accomplishing 3D registration
that meets the medical requirements.

2 Instrument-free 3D Registration in Arthroscopy

In the context of VBSN [17], a fiducial marker (WM) is rigidly attached to the
anatomy and works as the world reference frame. By tracking this marker, the
camera pose is known at all times with respect to a coordinate system that
is static with respect to the anatomy. This allows not only to determine the
camera motion between any two frames but also to represent 3D measurements
in world coordinates. Using this information, 3D reconstruction without the aid
of any additional instrumentation can be performed in a straightforward manner
by establishing keypoint correspondences, filtering out incorrect matches using
the known epipolar geometry and triangulating the remaining ones. A final step
of 3D registration aligns the reconstructed points with the pre-operative model
of the patient’s anatomy, enabling surgical plans to be overlaid in the targeted
anatomical part. Fig. 1 illustrates this pipeline using the example of a distal
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femur. The WM shown in the figure is a metal 3 mm-cube with an attached
thread that is screwed into bone and provides submillimetric tracking accuracy.
Its implantation is invasive but by being placed in bone (and not in cartilage
or soft tissue), surgeons are not concerned about permanent damage to the
anatomy due to the ability of bone to self-regenerate. This procedure does not
disrupt the normal course of the medical procedure as it typically lasts less than
30 seconds. Fig. 1 further evinces the fact that 3D reconstructions obtained from
pairs of frames observing different regions of the anatomy can be represented in
the same coordinate system (the WM), allowing a large spread of reconstructed
points across the whole anatomy. This benefits 3D registration algorithms as
a larger overlap between the pre-op model and intra-op data leads to higher
accuracy [1]. In this work we use the method proposed in [14] for initial global
registration and a standard ICP [3] for refinement.

2.1 Feature Matching Algorithms

For the past 20 years, since the appearance of SIFT [13], the literature in feature
extraction and matching has evolved significantly, with recent methods typically
making use of deep learning models [5,7,8,20,22]. These methods report dra-
matically better performances when compared to the classical approaches [13],
in particular in the presence of low-textured scenes and large viewpoint and
illumination changes [7,22]. In light of these results, we selected the state-of-the-
art two-view feature matching algorithms for evaluation under real arthroscopic
scenarios. For the sake of completeness, and given the success of SIFT, we also
included it in the assessment. The list of methods used as keypoint matchers
in the described 3D reconstruction and registration pipeline is the following:
(i) SIFT+NN [13], where SIFT combines a feature detector and descriptor,
and mutual nearest neighbor matching (NN) is used to obtain candidate cor-
respondences; (ii) DISK [23]+NN, where DISK is a CNN-based approach for
detecting and describing keypoints, and its output is used as input for the NN
matching algorithm; (iii) SuperPoint+LightGlue [5,11] (SP+LG), where SP is
a self-supervised approach to extract feature points and descriptors, while LG
performs matching; (iv) LoFTR [22], a semi-sparse image matching method; and
two recently dense feature matches, (v) RoMa [8] and (vi) DKM [7]. For each
method, we iteratively fine-tuned its parameters using a chosen representative
arthroscopic sequence and subsequently applied the optimized parameters to the
remaining arthroscopic sequences. The chosen parameters for each method can
be found in the Supplementary Material (Table 3).

2.2 Semantic Segmentation in Arthroscopy

One of the main challenges associated with arthroscopic imagery is the existence
of tissue connected to the rigid anatomical parts, such as bone and cartilage, that
is non-rigid and usually not visible in a CT or MRI. Since the pre-operative model
contains only bone and cartilage structures, 3D points should be reconstructed
mostly on these structures to minimize the existence of outliers that hamper
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the 3D registration process. While correspondences established on highly non-
rigid regions can be eliminated through verification of the epipolar geometry,
correspondences belonging to anatomical parts that are less non-rigid, such as
ligaments, cannot be discarded in a straightforward manner.

To tackle this problem, we developed a deep-learning model for automatic
semantic image segmentation that identifies which pixels belong to bone or car-
tilage structures. The chosen architecture to perform bone segmentation is a
standard U-Net [19] with loss function loss = 1−LDICE, where dice loss LDICE
measures the overlap between the inferred segmentation and the ground-truth
segmentation.

3 Experiments and Results

This section assesses the performance of the 6 feature matching algorithms de-
scribed in Section 2.1 in terms of quantity and quality of the 3D reconstructed
points and the ability to perform 3D registration with the obtained reconstruc-
tions. Results with and without considering the automatic segmentation model
are reported.

3.1 Dataset

Uncompressed arthroscopic video with 1080p resolution was acquired at a frame
rate of 18 fps in 7 different cadaver lab experiments of ACL reconstruction pro-
cedures, in which the distal femur is the targeted anatomy. A total of about
20k images was obtained and manually annotating all of them for generating
the bone+cartilage segmentation masks would be impractical. Thus, images for
training the segmentation model described in Section 2.2 were generated as de-
scribed in [9] by first manually annotating a subset of frames, ranging from 3%
to 30% of the total number of images, for each cadaver specimen sequence and
then training a model with the architecture as described in Section 2.2 for each
specimen. The objective is that the trained model overfits the input data so
that it can accurately predict the labels for the remaining images of the same
sequence. This approach was employed for 5 out of the 7 specimens. Three out
these 5 specimen sequences, comprising a total of 10387 images were then used
for training the general segmentation model and segmentation masks for the
remaining 2 out of 7 specimens were generated by model inference. Table 1 in
the Supplementary Material details the dataset in terms of how segmentation
masks were obtained. Figure 1 in the Supplementary Material shows examples
of segmentation masks predicted by the general model for Specimens 5 and 6,
which were exclusively allocated for testing. The model is able to generalize to
unseen data and accurately identifies bone+cartilage and background regions.

Image Pairs Selection The algorithms considered in Section 2.1 receive as
input a pair of frames and output a set of keypoint correspondences. It is well
known that small baselines between the frames may lead to large reconstruction
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errors [10], and very large baseline may cause significant viewpoint changes that
cause matching algorithms to fail. Since we have continuous and known camera
motion acquired at high frame rate, we can select appropriate baselines that
favour 3D triangulation. For each arthroscopic sequence, 150 pairs of images
with baselines between 1 and 5 mm were selected. In order to guarantee that the
selected pairs present variability in terms of camera motion, clusters of frames are
identified and the pairs are selected such that they belong to different clusters.
Cluster selection is performed using a graph theory-based scheme. First, relative
poses between all frames are computed, followed by the generation of a graph.
In this graph, nodes represent camera poses, and an edge exists between nodes
if the relative pose to another node falls within a threshold of 1.5 mm and
20◦. Then, each connected component of the graph is assigned to a cluster.
However, in cases where the camera movement is gradual, ensuring adequate
variability between clusters becomes challenging as connected components may
encompass camera poses capturing different image content. To address this issue,
an iterative approach is employed as follows: (i) computing the centroid of each
connected component, (ii) calculating the distance of individual nodes within the
component connected to the centroid, (iii) forming a new cluster if this distance
exceeds 5 mm, and (iv) repeating the procedure until no further divisions occur.

Registration Data Generation Since in arthroscopic scenarios the working
volume is small, the camera is typically close to the anatomy and the visible
region is restricted. For this reason, for a particular pair of frames, only a small
portion of the targeted anatomy becomes reconstructed. Successfully registering
intra-op data with a pre-op model, requires a good spreading of reconstructed
points. In order to accomplish this, data for performing registration is selected
by considering N pairs of frames, with N = 5, 10, 30 that belong to different
clusters. This selection is done in a random manner for creating 5 registration
sets for each value of N .

3.2 3D Reconstruction Evaluation

For each pair of frames obtained as described in Section 3.1, keypoint correspon-
dences are generated using each of the 6 considered algorithms and filtered by
considering a threshold of 5 pixels for the epipolar error. Standard triangulation
is then employed for reconstructing 3D points. In order to assess the performance
of the algorithms in reconstructing points on the regions of interest (bone and
cartilage), the segmentation masks are also applied for considering only those
points. Two evaluation metrics are considered: spreading of points on the region
of interest and distance of the reconstructed points to the pre-operative model.
Spreading of points is measured by identifying all pixels in the regions of interest
within a distance of 10 pixels from each matching point. This metric is quanti-
fied by determining the ratio of unique identified pixels to the total number of
pixels in the regions of interest. Using the registration obtained with the orig-
inal VBSN method [17] as ground truth, all reconstructed points were aligned
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with the pre-operative model and the distance of each point to the model was
measured. Results for all methods and specimens are shown in Fig. 2. On top of
each boxplot in Fig. 2b the median number of total matches is shown. Results

(a) Distribution of distances of recon-
structed points to the pre-op model. Blue
dots represent the average. The average
distances for LoFTR and RoMa are about
5 mm and 6 mm, respectively.

(b) Distribution of spreading of recon-
structed points. Blue dots represent the
average, and the median number of total
matches is shown in bold.

Fig. 2: Assessment of reconstruction performance for different knee specimens
obtained for the 6 considered keypoint matchers in terms of point a) distance to
the pre-operative model and b) spreading.

show that the accuracy of reconstruction is similar among the methods, with
DKM [7] being overall the best performer. In general, reconstruction errors are
satisfactory, presenting median values below 1 mm for all methods. The most
different aspect between the methods is level of spreading and the number of
points they are able to reconstruct. As expected, SIFT [13] provides very local
and sparse reconstructions. On the other hand, learning-based methods are able
to reconstruct orders of magnitude more points, in particular RoMa [8] that is
fully dense, and, more importantly, provide 3D points with good spreading.

3.3 3D Registration Evaluation

Registration was performed using points reconstructed from sets of pairs of
frames as described in Section 3.1. For Specimens 2, 5 and 7, a full inspection
of the femur was not performed, causing the acquired arthroscopic sequences to
be restricted to a single condyle. This yielded reconstructions with small over-
lap with the corresponding pre-operative model, precluding registration from
working properly. For the remaining specimens, registration was performed and
results considering semantic segmentation masks are shown in Fig. 3. Results
without semantic segmentation can be found in the Supplementary Material
(Fig. 3). Since the arthroscopic data was acquired in the context of ACL surgery,
for which there are post-op scans showing the location of the drilled tunnel, re-
sults are given in terms of tunnel placement accuracy as a distance between entry
points and an angle between the directions of the intra-op and post-op tunnels.
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Fig. 3: Assessment of the registration accuracy in terms of tunnel placement for
reconstructions obtained with the 6 different methods combined with semantic
segmentation for 5, 10 and 30 pairs of images. The top row represents the median
error in the entry point, in mm, and the bottom row represents the median error
in tunnel direction, in degrees. White cells correspond to failure cases or errors
larger than 4 mm or 8◦. The color version of the image is available online.

Different specimens present significantly different performances mainly be-
cause of the different levels of texture associated with the anatomies. Examples
of arthroscopic frames acquired for each specimen evincing this aspect are shown
in Fig. 2 of the Supplementary Material. White cells represent failure cases3 or
errors larger than 4 mm or 8◦. The most important observation of this study is
that when using at least 10 pairs of images and semantic segmentation, DKM [7]
yields errors below 4 mm and 8◦ for all specimens, achieving average errors in
the entry point of 2.0 mm and in tunnel direction of 3.5◦. These errors are com-
parable with the ones reported in the literature, with state-of-the-art works on
navigated surgery reporting errors in the entry point of 2.17 mm using a robotic
system [15] and average errors of 8.5◦ [4] and 6.74◦ [16] in tunnel direction. This
finding demonstrates that if the camera motion is known, registration with-
out the aid of any instrumentation is possible. Figure 4 in the Supplementary
Material exemplifies the alignments of the 3D model and reconstructed points
obtained for the 6 different methods using a randomly selected registration so-
lution.

All other methods present significantly poorer performances overall and failed
at least once in our experiments (refer to Table 2 in the Supplementary Mate-
rial). Also, not using segmentation masks precludes 3D registration from working
satisfactorily as the percentage of outliers becomes prohibitive.

4 Conclusions

This paper studies, for the first time, the possibility of performing instrument-
free 3D registration in the context of arthroscopy in which a fiducial marker has
been rigidly attached to the anatomy. A pipeline including image pair selection,
3 Registration is considered to fail if it is unable to find a solution with at least 30%

of inliers at 1 mm.
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keypoint matching, semantic segmentation, triangulation and 3D registration is
considered for evaluating the most relevant classical and deep learning-based
feature matching methods, and no optimization or refinement of keypoints is
performed. It has been demonstrated that by using DKM [7] as the feature
matcher, instrument-free registration that places ACL tunnels with accuracy
that meets the medical requirements is achieved.

We believe that by training the deep learning models with specific arthro-
scopic imagery can significantly improve the matching performance, which we
intend to test in the future.
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