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Abstract. Whole-body diffusion-weighted imaging (DWI) is a sensitive tool for assessing the 
spread of metastatic bone malignancies. It offers voxel-wise calculation of apparent diffusion 
coefficient (ADC) which correlates with tissue cellularity, providing a potential imaging bi-
omarker for tumour response assessment. However, DWI is an inherently noisy technique requir-
ing many signal averages over multiple b-values, leading to times of up to 30 minutes for a whole-
body exam. We present a novel neural network implicitly designed to provide high-quality im-
ages from heavily sub-sampled diffusion data (only 1 signal average) which allow whole-body 
acquisitions of ~5 minutes. We demonstrate that our network can achieve equivalent quality to 
the clinical b-value and ADC images in a radiological multi-reader study of 100 patients for 
whole-body and abdomen-pelvis data. We also achieved good agreement to the quantitative val-
ues of clinical images within multi-lesion segmentations in 16 patients compared to a previous 
approach.  
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1 Introduction 

1.1 Background 

Diffusion-weighted MRI (DWI) is a non-invasive tool used for staging and response 
evaluation in oncologic practice. Whole-body DWI is at the core of emerging response 
criteria in advanced prostate and breast cancers [1-3] and has also been incorporated 
into the National Institute for Health and Care Excellence and International Myeloma 
Working group guidelines for assessing myeloma-related bone disease [4,5]. DWI is a 
sensitive tool that radiologists use to review the extent of disease and enables voxel-
wise quantification of the change in the apparent diffusion coefficient (ADC), provid-
ing a potential marker for tumour response assessment [6].  

Whole-body DWI is typically achieved using a series of sequential imaging stations 
from the head to the mid-thigh, with each station comprising 30–50 equally-spaced 
axial sections, with images acquired using two to three diffusion weightings and typi-
cally many signal averages [7]. Therefore, WBDWI accounts for more than 50% of the 



2   

acquisition time of conventional whole-body MRI studies with a 1-hour duration. In 
the context of the ever-increasing capacity pressures on MRI departments, reducing 
acquisition times would facilitate the wider adoption of clinical WBDWI, reduce costs, 
and improve patient acceptance. DWI is also embedded into consensus MRI protocols 
across almost all tumour types including primary prostate and breast cancers, metastatic 
liver disease, gynaecological and gastrointestinal cancers [8-12] where time savings 
would also be beneficial. 
 
1.2 Contributions 

We present a context-aware multi b-value deep learning neural network implicitly de-
signed to denoise heavily sub-sampled diffusion-weighted imaging data, producing im-
ages with equivalent clinical image quality. We achieve this by retaining the network’s 
2D nature but introducing spatial context through slices neighboring to the slice of in-
terest, as well as processing simultaneously all respective b-values. Additionally, we 
introduce a custom-made loss function based on calculating the ADC values during 
training.  

Due to the quantitative nature of DWI and the potential of ADC to assess intra-lesion 
changes to monitor treatment response, the validation of the network-generated images 
needs to be meticulous going beyond the assessment of contrast. Therefore, we per-
formed an exhaustive quantitative and qualitative analysis. We, also, compared our 
novelties against a published methodology which demonstrated that by using only 1 
diffusion encoding direction and 1 signal average using b-values such as 50, 600 or 900 
s/mm2 it is possible to achieve up to 50% reduction in whole-body MRI acquisition 
times by reducing whole-body DWI to less than five minutes.  

Overall, in this article, we achieve three objectives: (i) blindly compare radiological 
image quality of Enhanced-quickDWI with conventional DWI in a much larger patient 
cohort, (ii) compare quantitative results of our novel model trained with a custom-made 
loss function against a published methodology (henceforth called “DNIF”), and (iii) 
evaluate both algorithms in other cancer types acquired using a smaller field-of-view 
imaging protocol focused on the abdomen and pelvis. 

2 Related Work 

One of the most common approaches for DWI acceleration is based on supervised 
learning where the 2D “noisy” image acquired using fewer signal averages (NeX) is 
given as input and the “clinical” image reconstructed by all signal averages (NeX: ~9-
16 for whole-body) is used as ground-truth. A convolutional neural network usually 
resembling the U-net architecture is used to denoise the image and is trained by a loss 
function to minimize the difference between the output and ground-truth. Wessling et 
al. utilized a variational network to accelerate a breast diffusion sequence by 40% [13] 
by reducing averages from 4 to 2 for low b-value and from 16 to 8 for high b-value 
images. Kaye et al. accelerated prostate DWI using a CNN with a mean-squared-error 
loss function to denoise sub-sampled data of two signal averages [14]. Afat et al., have 
used a variational network to accelerate live DWI by 40% by reducing the signal 
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averages from 12 to 6 for the high b-value images and from 2 to 1 for the low b-value 
images [15]. Self-supervised approaches, such as Noise2Noise [16] which model the 
noise and do not require labelled data could be incorporated. Kawamura et al used a 
supervised learning approach with a CNN to predict the residual noise instead of the 
denoised image directly [17]. Maosong et al., used a residual encoder-decoder Wasser-
stein generative adversarial network along with perceptual similarity loss function to 
denoise 3D MRI, but not DWI [18]. Instead of reducing NeX other approaches include 
shot-to-shot phase reconstruction [19] and k-space undersampling [20]. 

3 Materials and Methods 

3.1 Image Acquisition 

This retrospective study was approved by our local ethics committee and subsequently 
received national approval by the NHS health research authority. Patients were split 
into training (N = 84), validation (N = 16) and test (N = 84) groups. Validation data 
were used for quantitative evaluation of model losses/metrics during training, whilst 
test data were used for a qualitative radiological evaluation of the model which 
achieved the best quantitative performance. All images were acquired on one of three 
1.5T scanners (two Aera and one Sola, Siemens Healthcare GmbH). We employed a 
multi-directional diffusion-weighted (MDDW) protocol for acquiring whole-body and 
abdomen-pelvis DWI examinations, the parameters for which are defined in Appendix 

Table 1 (2D distortion correction was applied to all source DWI images). 
 
3.2 Deep Learning Model 

Core Architecture. Our Enhanced-quickDWI model consists of an encoder-decoder 
path using residual blocks and skip connections (Fig. 1): Each convolution layer con-
sists of a 3x3 filter with ReLU activation and the weights incident to each hidden unit 
is constrained to have a norm value of less than or equal to 3 after hyperparameter 
tuning. The number of filters for each block were 64, 128, 256, 512 and 1024 respec-
tively. 
 
Spatial Context and Multi b-value Information. To give spatial context and random 
direction information to the network, we retain the 2D architecture but give as input a 
9-channel image: 3 contiguous slices where the slice of interest is in the middle x all 3 
corresponding b-values for every slice. Image voxels have been transformed using a 
log-transform (any zero values set to 1). Standardization is performed automatically as 
part of the model (Eq. 1). The output of core architecture is a 3-channel image contain-
ing the predicted 3 b-value images for the slice of interest. The novelty consists in the 
prediction of the slice of interest using the two neighboring slices as spatial context 
instead of predicting all three slices as a volume. 

𝑧𝑖 =
𝑥𝑖−𝜇

𝜎
   where  𝜇 = 1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1   and.  𝜎 =

1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1     [Eq. 1] 
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Loss Function. We introduced a novel regularization to our model by forcing the net-
work to make accurate predictions of the ADC map during training. We implemented 
a custom-made non-trainable layer which calculates the ADC map using a linear-log fit 
from the predicted b-value images, including it as part of the overall loss function. The 
final output of the model is a 4-channel image comprising all b-value trace-weighted 
images for the slice of interest plus the corresponding ADC map. The loss function for 
this model was the sum of mean-absolute-error (MAE) between log-transformed pre-
dicted images and ground truth images for all b-values and subsequently derived ADC 
(training parameters and data preprocessing are presented in Appendix Table 2). The 
network was trained separately on whole-body (b = 50, 600 and 900 s/mm2) and sub-
sequently on abdomen-pelvis (b = 100, 600 and 1050 s/mm2) data. The abdomen-pelvis 
model was initialized using pretrained weights from the trained whole-body model. 
 
Training Data. For each b-value, 1 diffusion direction and 1 signal average was ran-
domly selected from the MDDW data. Three-slice slabs were created placing the slice 
of interest in the middle. This process resulted in a total of 16480 input / output data 
pairs for whole-body training images, 5469 for abdomen-pelvis training images, 2960 
for whole-body validation images, and 1122 for abdomen-pelvis validation images. 
 
Comparison. We compared our model against the DNIF [21] algorithm, where the 
input is a 1-channel stardardized (Eq. 1) image. The core architecture for both algo-
rithms (e.g. the encoder-decoder path) were kept the same. The loss function for train-
ing this model was the mean-absolute error (MAE) between prediction and ground-
truth images (all b-values treated equally). For the training data the same single direc-
tion and signal average was randomly selected for each slice. This process resulted in 
a total of 75198 image pairs for training, and 7068 available for validation. 
 

 
 

Fig 1. The core Enhanced-quickDWI deep-learning model with linear output activation. For the 
DNIF model, in channels = 1 and out channels = 1, whilst for both whole-body and abdomen-

pelvis models, in channels = 9 and out channels = 3. 
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3.3 Experimental Design 

Quantitative Model Evaluation. To quantitatively evaluate the precision of generated 
DWI and ADC values, we utilized an externally validated deep learning methodology 
[22] that automatically delineates the skeleton and soft-tissue organs within both whole-
body and abdomen-pelvis validation patients (see Fig 2 for an illustrative workflow, 
including a list of delineated body regions). For each model, the inferred voxel values 
(each b-value and derived ADC maps independently) were compared with the ground-
truth voxel values from trace-weighted images. A quantitative comparison was made 
by comparing the voxel-wise root-mean-square-error (RMSE) within each region 
against the values of the clinical images, with the hypothesis that a better model will 
reduce the RMSE across all b-values and for ADC maps. 
 
Qualitative Model Evaluation. To assess the clinical utility of our generated images, 
our model was evaluated by three expert radiologists using a combination of the vali-
dation and test datasets, comprising a total of 100 patients. For each patient study, the 
corresponding pairs of diffusion-weighted images and ADC maps for ground truth tar-
get datasets and Enhanced-quickDWI model output datasets were uploaded to a secure 
cloud-based GDPR-compliant radiological image viewing platform (Collective Minds 
Radiology, www.cmrad.com) for review by independent, external radiologists using a 
fully anonymized and randomized process. We ensured that at least two weeks elapsed 
between consecutive reads of the clinical averaged and Enhanced-quickDWI processed 
images (presented in random order) for the same patient study. We also re-anonymised 
(double-blinded) the images, so that reads of one image type could not inform the read-
ing of the other. Readers scored overall image quality (OIQ) on a 5-point Likert scale 
for diffusion-weighted images and ADC maps separately.  
 
Statistical Evaluation of Qualitative Analysis. Using a non-inferiority experimental 
design, we aimed to provide evidence for the null hypothesis that the average Likert 
score for image quality from Enhanced-quickDWI processed images is insignificantly 
than for clinical, trace-weighted scans (independently for b-value images and ADC 
maps). A non-inferiority margin of 0.5 was prospectively chosen by an internal expert 
panel of radiologists to define a non-inferiority threshold. 

4 Results and Discussion 

4.1 Model Training 

All models achieved adequate convergence after 200 epochs for the whole-body model, 
and 40 epochs for the tuned abdomen-pelvis model. Upon visual inspection our En-

hanced-quickDWI model successfully denoised the heavily sub-sampled noisy input 
data and improved their image quality. A representative patient example is presented 
in Fig 3. The Enhanced-quickDWI-generated images appear sharper and with more ac-
curate contrast over the DNIF-generated. Additionally, in the whole-body projection 
there is a noticeably smoother transition between neighboring slices (Fig. 3 left-bottom 
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and right: red arrows) which is more likely attributed to the inclusion of spatial context 
compared to the DNIF model which was trained only on single slices.   
 

 

Fig 2. An illustrative workflow for quantifying improvement in image quality using our En-

hanced-quickDWI model. Delineations for each body regions are presented in different colours, 
either as a surface rendering (left) or colour overlay on the multi-planar reformatted ADC maps 
(centre). The borders of the scatter plots (right) are colour-coded to match the body regions from 
which they were derived. 
 
4.2 Quantitative Model Evaluation 

Enhanced-quickDWI was superior to DNIF in more than 90% of cases as the RMSE 
value for whole-body or abdomen-pelvis images is reduced compared to the RMSE 
values for the DNIF model. Both cases show decreased RMSE values when compared 
to the noisy input MDDW data on every occasion. The same trend is observed across 
all b-values and ADC maps independently. An overview of the quantitative evaluation 
of the precision of predicted values for each of the delineated body regions are demon-
strated in Fig 4. Based on these results the Enhanced-quickDWI model was selected 
over DNIF for the independent qualitative reader study. 
 
Despite the same core architecture between the Enhanced-quickDWI and DNIF models 
this marked improvement in performance can be explained by the inclusion of the 
neighboring slices as spatial context which can make image transition smoother. The 
inclusion of the ADC calculation inside the loss function also acts as an additional reg-
ularization to the values produced by the network making them more realistic within 
the DWI context. Another decisive aspect is the simultaneous processing of all b-val-
ues. Other approaches utilize fewer averages or directions to accelerate the sequence 
but opt for more than 1 especially in the case of high b-values which result to a more 
modest time reduction [13-15]. Our approach essentially allows us to circumvent that 
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obstacle, as the b-value images are not only useful for the calculation of ADC and 
providing complementary information, but also essentially feed the network with dif-
ferent direction or signal average information within the same input. 
 

 
Fig 3. Results from an example whole-body validation patient. High b-value images (b = 900 
s/mm2) are presented along calculated ADC maps for the heavily sub-sampled noisy input data, 
the ground-truth clinical data, the Enhanced-quickDWI-generated and the DNIF-generated im-
ages [Left-top], with sagittal [Left-bottom], and Maximum intensity projection reconstructions 
[Right]. Note smoother transition between slices by Enhanced-quickDWI (red arrows). 
 

 
 

Fig 4. Quantitative comparison of value prediction for all 16 validation patients. Box plots indi-
cate the range of RMSE calculated for each body region (Clinical values vs noisy input, DNIF-
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generated and Enhanced-quickDWI generated respectively). In most cases a negative trend is 
observed indicating that image quality is better when using the whole-body [top] and abdomen-

pelvis [bottom] Enhanced-quickDWI model versions compared to the DNIF model. Addition-
ally, both models are more accurate when compared with the noisy input MDDW data. 
 
4.3 Qualitative Model Evaluation 

Enhanced-quickDWI demonstrated non-inferiority to the clinical images in all cases for 
both whole-body and abdomen-pelvis versions for the 100 patients of combined valida-
tion and test sets. This held true for all b-value images and calculated ADC maps. An 
overview of the reader overall image quality assessment is presented in Fig 5, which 
also demonstrates that sufficient data were available in this study warrant our non-in-
feriority claim (95% confidence interval in the mean Likert difference were within the 
non-inferiority margin). We plan to expand our validation analysis to an additional 200 
patients. 
 
 

 
 
Fig 5. Results from the qualitative reader study (overall image quality). Results for the whole-

body and abdomen-pelvis Enhanced-quickDWI model versions indicate that non-inferiority may 
be inferred for ADC maps (green bars), and for the for b-value images (black bars) as all cases 
lie to the left of the rightmost red dashed line (non-inferiority limit). 

5 Conclusion 

We propose Enhanced-quickDWI, a context-aware multi b-value deep learning neural 
network for the denoising of single average DWI data resulting in images of equivalent 
clinical quality. Our results indicate that the images produced by our model could be 
clinically used as a substitute to high-quality clinical images thereby significantly re-
ducing acquisition time. We performed both quantitative and qualitative analysis in 100 
patients providing the rigorous validation needed for the clinical translation of such 
quantitative imaging applications.  

Image quality difference
(Clinical / Enhanced-quickDWI)

Image quality difference
(Clinical / Enhanced-quickDWI)
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