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Abstract. In-context learning (ICL) with Large Vision Models (LVMs)
presents a promising avenue in medical image segmentation by reduc-
ing the reliance on extensive labeling. However, the ICL performance
of LVMs highly depends on the choices of visual prompts and suffers
from domain shifts. While existing works leveraging LVMs for medi-
cal tasks have focused mainly on model-centric approaches like fine-
tuning, we study an orthogonal data-centric perspective on how to select
good visual prompts to facilitate generalization to medical domain. In
this work, we propose a label-efficient in-context medical segmentation
method by introducing a novel Meta-driven Visual Prompt Selection
mechanism (MVPS), where a prompt retriever obtained from a meta-
learning framework actively selects the optimal images as prompts to
promote model performance and generalizability. Evaluated on 8 datasets
and 4 tasks across 3 medical imaging modalities, our proposed approach
demonstrates consistent gains over existing methods under different sce-
narios, improving both computational and label efficiency. Finally, we
show that MVPS is a flexible, finetuning-free module that could be easily
plugged into different backbones and combined with other model-centric
approaches.

Keywords: In-Context Learning · Meta-Learning · Active Learning ·
Reinforcement Learning · Medical Image Segmentation.

1 Introduction

Large vision models (LVMs), such as SegGPT [27], Painter [26], and variants of
SAM [12], can learn to perform segmentation on unseen tasks from a few visual
prompts without updating model parameters. This in-context learning (ICL)
ability enables label-efficient medical image segmentation [29, 5] without relying
on expensive expert annotations and thus ease the deployment of medical AI.

However, the effectiveness of ICL depends on the quality and number of
visual prompts [24, 32]. Transferring LVMs from natural images to medical im-
ages faces further challenges due to domain shifts [5] and the large variability
across patient populations, demographics, imaging protocols, etc. For example,
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Fig. 1: a) In-context segmentation. Large Vision Models are capable of taking
in visual prompts of image-mask pairs and outputting the segmentation mask
prediction for the query image. b) Instability of ICL with random prompt-
ing. ICL has shown unstable performance using random prompts. By conducting
experiments of in-context skin lesion segmentation using SegGPT [27] on 4 dif-
ferent dermatology datasets [25, 4, 17], with prompt size of 2, the results show
a large variance. (Mean DICE scores: 37.36%, 14.84%,11.46%, and 31.80%). c)
Better prompts lead to a significant improvement in ICL. In this simu-
lation study, we iterate through all prompt selection options (with prompt size of
2 in this example) given a prompt pool of 100 images and test ICL performance.
There is plenty of room for improvement over the current prompt selection meth-
ods like TopK [32] approach.

Figure 1(b) demonstrates this issue in dermatology image segmentation. Using
an LVM with two randomly selected visual prompts, the performance varies by
20.11% on average across four different dermatology image datasets [25, 4, 17, 8].
ICL also demonstrates high sensitivity to the number of prompts in challenging
segmentation tasks such as vessel segmentation.

While the critical role of prompt selection has gained significant attention in
the Large Language Model(LLM) field [31], LVM adaptation works have been
focusing primarily on the model-centric approaches such as efficient model fine-
tuning [10, 33]. Some works [21, 14] have explored the impacts of prompt quality
on LLM adaptation to new data and tasks; [16, 31] focuses on formulating the
selective prompt labeling as a data-centric method to determine which prompt
samples are valuable for labeling, similar to active learning. On the imaging
side, [15] adapts LVMs to medical images by fine-tuning the model on exten-
sive medical images, but the complexity of training large-scale models and the
need for massive and expensive labeled data highlight the significant resources
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required for such comprehensive models; [29] utilizes an adaptor to fine-tune
LVMs efficiently to medical datasets but remains model-centric. [32] is the first
work to discuss visual prompt selection on natural images and proposes an unsu-
pervised TopK approach and a supervised method SupPR for prompt selection.
SupPR requires training of a large visual embedding extractor and demonstrat-
ing slight improvements over TopK approach. Other works have also explored
how to improve the prompt quality given a fixed set of prompts: [24] proposes
prompt fusion, using an ensemble of different prompt layouts to activate knowl-
edge at different positions in the LVMs; [30] devises a prompt enhancer trained
on large-scale labeled data to add perturbations to the in-context prompt pairs.
However, these works still rely on TopK prompt selection, which are constrained
by the distance measurements and cannot always find the visual prompt optimal
across domains. Overall, there hasn’t been a generic solution to optimizing visual
prompt selection to adapt LVMs efficiently for in-context medical segmentation.

Herein, we introduce MVPS, a novel Meta-learning-driven Visual Prompt
Selection framework. The key contributions of our research lie in three-fold:

1. We propose a label-efficient in-context medical segmentation method en-
abled by introducing a novel Meta-driven Visual Prompt Selection mecha-
nism (MVPS), which enables cross-domain adaptation of LVMs to medical
imaging.

2. Specifically, we propose a meta-driven active visual prompt retrieval ap-
proach, by constructing a meta-learning scheme to teach a transformer-based
prompt retriever which images are worthy of being selected as visual prompts
to boost model performance. The prompt retriever is optimized through the
probability distribution estimation and reward policy gradients.

3. MVPS provides a data-centric and finetuning-free enhancement to in-context
medical segmentation, with both data and label efficiencies largely benefit-
ting medical applications. MVPS consistently outperforms baselines across
8 datasets and 4 tasks across 3 medical imaging modalities. We also show
that MVPS is flexible enough to plug into different LVM backbones, and to
be combined with model-centric approaches.

2 Methodology

In the following section, we will introduce the technical details of the proposed
MVPS framework as shown in Fig 2. Taking Dermatology as an example, given
a training set (e.g., HAM10k) and a testing set (e.g., ISIC), the MVPS frame-
work constructs tasks for meta-training and meta-testing. Each task consists
of a Support Set of 1000 unlabeled images and a Query Set of 100 labeled
image-mask pairs. The goal of meta-training is to learn a prompt retriever f(·)
that can select the best prompts from the support set to enhance segmentation
performance on the query set. The retriever is optimized by comparing the out-
put segmentation masks of the Large Vision Model (LVM) against the ground
truth masks in the query set, and then using this feedback to improve prompt se-
lection. For meta-testing, the retriever selects prompts from a simulated prompt
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pool of 1000 images in the test dataset. The LVM uses these prompts to perform
segmentation on new query images. During meta-testing, we evaluate and report
the LVM’s segmentation performance on different target (meta-test) datasets in
order to mimic the real-world scenario when the LVMs are utilized in a different
hospital with a new patient cohort.

Fig. 2: Meta-training and meta-testing stages of the proposed MVPS framework
(use dermatology dataset as an example). Note that prompt retriever is trainable
while large vision model is kept frozen.

Meta Tasks Construction. As shown in Fig. 2, in our meta-learning set-
ting, each task is an in-context medical segmentation problem, denoted as τi :
{Ui,Qi}Ti=1. Suppose there are a total of T tasks. Each task consists of an un-
labeled image set U = {xj}1000j=1 , which we refer to as the support set or prompt

pool, and a labeled image set Q = {(xk, yk)}100k=1 which we refer to as query set
consisting of a set of image x and segmentation label y. Both Q and U are sam-
pled from the training datasets and there is no overlap between the images in
Q and U within a single task. In this way, we define each meta prompt learning
task τi as: τi =

(
U support
τi ,Qquery

τi

)
, where U support

τi indicates the support set as
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the candidate pool for prompt selection, and Qquery
τi indicates the query set to

evaluate the in-context learning performance for the current task τi. Following
the setup of active learning, we hold out specific disease categories if disease
category labels are available. We only sample the task τi from the non-heldout
labels for the meta-training tasks. For meta-validation, we sample from a mix
of non-heldout labels and held-out labels. This ensures that meta-training tasks
and meta-validation tasks are not sampled from too similar domains to prevent
the model from simply memorizing training samples.

Prompt Retriever. Following previous active learning research [20], we de-
sign a trainable prompt retriever using the transformer architecture. The re-
triever takes in a pair of extracted embeddings for both unlabeled and labeled
images

(
U support
τi ,Qquery

τi

)
and outputs a softmax-normalized distribution which

indicates the probability of all the samples in the prompt pool to be selected as
a good prompt over the prompt pool samples. In order to distinguish the sup-
port and query representations [7], we add two learnable vectors that represent
prompt pool and query sets, respectively, to their corresponding embeddings.
Based upon this predicted distribution, we select k samples with the highest
probabilities, along with their labels, as the visual prompts. These image-mask
pairs will serve as inputs to the LVMs for completing in-context segmentation
tasks to predict the segmentation masks for query images.

Task Augmentation for Better Generalization. To perform more robust
meta-training and address the data scarcity problem in domains with small train-
ing sets, we propose a new task augmentation by mixing up images and segmen-
tation masks. Specifically, we extend the idea of mix-ups to task augmentations
to further densify the task distribution. Randomly selecting an anchor task τi,
and another task τj , we form a new task and support set by interpolating the(
xsupport
τi , xsupport

τj

)
and corresponding masks (ysupportτi , ysupportτj ) from τi and

τj , using a mixing ratio λ ∈ [0, 1], so that x̃τi = (1 − λ)xτi + λxτj , ỹτi =
(1− λ)yτi + λyτj .

Optimization and Reward Shaping. The reward R is determined by a
scoring function that evaluates the efficacy of the Large Vision Model (LVM) on
the query set Qτi , when given a selected prompt p from U , formally denoted as

R(p,Qquery
τi ) = score(yquery

i ,LVM(p, xqueryi )), xi, yi ∈ Qquery
τi (1)

Here, we employ the DICE coefficient on the query dataset to calculate this re-
ward. The aim is to train the prompt retriever to act as a policy model to discern
and generalize the characteristics of good contextual prompts and enable the se-
lection of informative unlabeled examples in scenarios where the retriever may
not have exposure to any labeled instances. We utilize the simple but effective
expected reinforcement performance as our objective [28, 31, 22] and optimize by
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back-propagation of policy-gradients

∇θL = E∼Pθ(p|Usupport
τi

)[
(
R

(
p,Qquery

τi

)
)∇θ log

(
Pθ(p | U support

τi )
)]

(2)

Here we approximate the expected value by a single Monte-Carlo sample. Previ-
ous works in reinforcement learning [31, 2] have found that sparse reward learning
is unstable and difficult. Reshaping the reward function into an intuitive addi-
tional gain of getting the retrieved sample will help stabilize the training while
preserving the invariance of optimal policies. Therefore, we utilize the reshaped
reward function based on the marginal utility our p gains over the prompt p′

random baseline retrieves: R(p) = R(p,Qquery
τi )−R(p′,Qquery

τi ).

3 Results

To evaluate the performance of the proposed MVPS method, we conduct ex-
periments on three medical image modalities (dermatology, ophthalmology, and
radiology) and four tasks (skin lesion segmentation, lung lesion segmentation,
optical disc segmentation, and vessel segmentation) over 11 datasets.
Datasets. For dermatology image segmentation task: we use the HAM10k [25]
dataset for meta-training and validation; we test on PH2 [17] and ISIC2016 [8]
datasets to study the relationship between prompt retrieval effectiveness and
distribution shifts between source and target domains, including task/label
shifts, population shifts, and technology shifts. For ophthalmology image seg-
mentation task : we design two subtasks to explore prompt retrieval behav-
ior under contrasting task difficulties. For optical disc segmentation, an
easier task, we train on the Refuge [18] dataset and test on a combined set
from PAPILA [13]+IDRID [19]. For the more challenging vessel segmentation
task, we use the FIVES [11] dataset as the source, a combined DRIVE [23],
CHASEDB [6], and STARE [9] datasets as the test sets. For Chest X-ray COVID-
19 identification task : we use the CovidQUEX dataset as train set. Collected by
the same group, the COVID-19 Radiography dataset [3] is used for meta-testing,
examining a scenario where the source and target share the same task and min-
imal shifts.
Experiments and Comparisons. For prompt retriever, we use a transformer
with an embedding size of 256, a max sequence length of 1101 (including 1000
support size, 100 query size, and 1 separator token), 8 heads, 8 encoder blocks, 4
decoder blocks, and a feedforward dimension of 2048. We sample 150000 meta-
tasks for each modality and use a mix-up ratio of 0.1 for augmentation. We
use an Adam optimizer with a learning rate of 1e-4 and batch size of 64 for 10
epochs. We use SegGPT [27] as the LVM backbone and a LAION-2B ViT model
for embedding extraction. Experiments are done on 1 AWS-g5.12xlarge instance.
We compare against random selection, TopK/Unsupervised approachs and the
SupPR [32] as data-centric prompt retrieval approaches. We also compare with
model-centric low-rank adaptation (LoRA) methods [10, 33] for LVM adapta-
tion to medical domain, where we finetune 14% of total params on the train
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set with full labels. To avoid randomness, we run experiments of 30 runs and
report average scores as results. Sampling at a step size of k = 1, we test the
regular MVPS frozen during test time and MVPS with test time adaptation
(TTA) receiving policy gradient updates during test time, which assumes initial
access to a dynamically expanding tiny labeled evaluation set as more prompt
images get labeled. We also show that MVPS is a flexible module that can be
combined with model-centric approaches like LoRA. Finally, we approximate a
performance upper bound using supervised SOTAs [29].
Findings. Tested at prompt length k = 2, 4, 8, 16, 32 (for retinal images, we stop
at 16 due to small test size), MVPS offers consistent ICL enhancements under
various source-target settings, including the same task, different task difficulties,
and different distribution shifts. Qualitatively, we found that better prompts
found by the retriever help the model better recognize noisy patterns adjacent
to lesions and not just segment based on object contrasts, as shown in Fig 3.
Quantitatively, MVPS and MVPS+TTA average a 4.08% and 4.66% gain over
TopK and a 7.40% and 7.97% gain over random selection. For the same task
and minimal distribution shifts setting in X-rays, we observe a 3.6% performance
gain of the frozen LVM over TopK but diminishing returns as the number of k
increases. When we combine MVPS with LoRA, it reaches a 95.1% comparable
to supervised SOTA at k = 32.

For contrasting task difficulties in Opthalmology experiments, we found
that the harder task (Vessel) has less (4.87%) but still significant average gain
compared to the easier task (Optical Disc) (6.725%), similar to those findings
in NLP prompting [31] and suggesting that prompt insights generalize across
tasks. As shown in Table 1, for different distribution shifts in Dermatology,
we found that MVPS shows consistent gains despite population shifts (ISIC) and
technology shifts (PH2), while stronger label shifts in ISIC dataset may be the
cause of less average gain than PH2 dataset. As an ablation, we found that our
test time adaptation indeed helps improve performance further upon MVPS, yet
we have smaller gains when the prompt pool is small in PH2 or retinal datasets.
Efficiency With frozen LVMs, MVPS only needs to train the prompt retriever
with trainable parameters of around 22M . For a comparison, parameter-efficient
fine-tuning methods like LoRA have 52M trainable parameters, while fully fine-
tuning LVMs such as medicalSAM [29] will require 260M parameters. SupPR
requires contrastive pretraining of a vision transformer as a feature extractor
( 315 million parameters). It is also a flexible module that isn’t exclusive to
other model-centric methods like LoRA, with our results showing a consistent
gain of 2.93% improvement when combined. We also tested MVPS on other in-
context learning backbones such as Universeg [1] on the PH2 dataset and still
got a gain of 3.70% over TopK and our combined approach 4.92% over LoRA.

4 Conclusion

To enhance ICL efficiency when applying LVMs to new medical imaging domains,
we propose MVPS, a Meta-driven Active Prompt Selection framework. We meta-
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Method Type K PH2 ISIC Xray K Optical Vessel

Random Data 4 79.8 63.1 77.8 4 46.1 41
8 80.1 67.9 82.1 8 64.4 59
32 81.5 70.5 87.2 16 73 62.3

TopK [24, 30, 32] Data 4 84.0 67.2 79.0 4 55 44.0
8 84.2 72.3 84.3 8 65.5 61.0
32 85.8 76.5 88.3 16 73.5 64.5

SupPR [32] Data 4 88.17 72.69 81.95 4 59.77 47.97
8 88.31 76.18 85.88 8 73.43 70.65
32 89.28 77.20 88.10 16 79.22 72.53

MVPS Data 4 88.2↑4.2 72.3↑5.1 82.6↑3.6 4 59.9↑4.9 48.6↑4.6
8 88.5↑4.3 76.2↑3.6 86.2↑1.9 8 73.6↑8.1 71.0↑10.0
32 89.5↑3.7 77.9↑1.4 89.1↑0.8 16 79.9↑6.4 72.6↑7.1

LoRA [33, 10] Model 4 85.2 75.6 83.8 4 73.4 61.2
8 86.3 78.2 88.8 8 79.3 72.5
32 91.5 82.3 93.3 16 86.9 74.6

LoRA+MVPS Combined 4 89.9↑4.7 78.5↑2.9 85.9↑2.1 4 76.5↑3.1 68.6↑7.4
8 90.3↑4.0 79.4↑1.2 89.8↑1.0 8 81.7↑2.4 75.3↑2.8
32 93.3↑0.8 92.3↑2.8 95.1↑1.8 16 89.7↑2.8 75.7↑1.1

Supervised [29] - - 96.4 94.8 98.1 96.6 86.8

Table 1: DICE Score Over Different Datasets and K. Full results in Appendix.
DICE was used as both our scoring function and performance metric, for the
convenience of showing the score of supervised methods as an upper bound
for direct comparison. We have also tested the mIOU as scoring function and
observed similar patterns.

Method Type K PH2 ISIC Xray K Optical Vessel

MVPS Data 4 88.2 72.3 82.6 4 59.9 48.6
8 88.5 76.2 86.2 8 73.6 71.0
32 89.5 77.9 89.1 16 79.9 72.6

MVPS+TTA Data 4 88.2 72.8 85.4 4 59.9 48.6
8 88.5 76.2 88.2 8 73.6 71.0
32 90.9 78.3 89.5 16 81.1 73.2

Table 2: Ablation: Does Test Time Adaptation Help?
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Fig. 3: Segmentation Results from MVPS vs TopK Prompting.

train a transformer-based prompt retriever optimized through reshaped reward
policy gradients. MVPS offers a data-centric and finetuning-free enhancement to
ICL, leading to efficiencies in training and label acquisition processes. MVPS’s
flexibility allows for integration with different LVM backbones and model-centric
approaches.
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