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Abstract. Temporal Action Segmentation (TAS) of a surgical video is
an important first step for a variety of video analysis tasks such as
skills assessment, surgical assistance and robotic surgeries. Limited data
availability due to costly acquisition and annotation makes data aug-
mentation imperative in such a scenario. However, extending directly
from an image-augmentation strategy, most video augmentation tech-
niques disturb the optical flow information in the process of generat-
ing an augmented sample. This creates difficulty in training. In this
paper, we propose a simple-yet-efficient, flow-consistent, video-specific
data augmentation technique suitable for TAS in scarce data conditions.
This is the first augmentation for data-scarce TAS in surgical scenar-
ios. We observe that TAS errors commonly occur at the action bound-
aries due to their scarcity in the datasets. Hence, we propose a novel
strategy that generates pseudo-action boundaries without affecting opti-
cal flow elsewhere. Further, we also propose a sample-hardness-inspired
curriculum where we train the model on easy samples first with only
a single label observed in the temporal window. Additionally, we con-
tribute the first-ever non-robotic Neuro-endoscopic Trainee Simulator
(NETS) dataset for the task of TAS. We validate our approach on the
proposed NETS, along with publicly available JIGSAWS and Cholec T-50
datasets. Compared to without the use of any data augmentation, we
report an average improvement of 7.89%, 5.53%, 2.80%, respectively, on
the 3 datasets in terms of edit score using our technique. The reported
numbers are improvements averaged over 9 state-of-the-art (SOTA) ac-
tion segmentation models using two different temporal feature extrac-
tors (I3D and VideoMAE). On average, the proposed technique outper-
forms the best-performing SOTA data augmentation technique by 3.94%,
thus enabling us to setup a new SOTA for action segmentation in each of
these datasets. The dataset and the complete source-code is available at:
https://aineurosurgery.github.io/VideoCutMix.

1 Introduction

Temporal action segmentation. Given a video V with n frames (f1, . . . , fn),
temporal action segmentation (henceforth referred to as TAS) can be defined as
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Fig. 1. The proposed video-specific augmentation technique is illustrated in (a), gener-
ating pseudo-action boundaries while preserving flow consistency. The strategy signifi-
cantly improves the performance of all existing temporal segmentation techniques. The
density plots for each class before and after augmentation are shown in (b). Effective-
ness is demonstrated in (c), and (d) showcases the performance against various state-
of-the-art (SOTA) augmentation techniques with different action segmentation models
for the JIGSAWS [7] dataset.

the task of labelling every frame of a video with the corresponding action label
chosen from a fixed set. TAS is inherently different from action recognition, which
is a video classification problem where one classifies a given video clip based on
the action being performed in the video (single label for the whole clip).
TAS for neuro-endoscopic skills training. Neuro-endoscopic skills training is
generally achieved using a box-based trainer, in which a trainee performs pick
and place tasks under the guidance of an endoscope [18]. However, the lack of a
well-curated dataset does not allow TAS of these videos and thereby limits the
performance of automated evaluation, surgical training, etc. Hence, there is a
pressing need for a well-curated dataset for the problem.
TAS in a data-constrained setting. In a data-constrained scenario like surgical
skills evaluation [13], the typical size of the video samples available is merely 176
(approx. 58 min dataset) for the JIGSAWS dataset [7]! In contrast, a natural
video dataset like Breakfast [11] has 1712 videos (approx. 77 hours of data). The
situation becomes even more critical with increasing specialization of the task
[17], or safety and privacy considerations [15]. Hence, the use of effective data
augmentation becomes imperative.
Data augmentation for video tasks. Data augmentation enhances deep neu-
ral network (DNN) training, starting from initial models like AlexNet [10]. Early
methods introduced image corruptions (e.g., blur, colour jitter), and recent tech-
niques involved mixing samples through masking [23] or generic convex combi-
nation [25]. Generally, video datasets are much smaller than their image coun-
terparts. Despite that, surprisingly, there are very few techniques available for
video augmentation. Researchers have explored temporal (alter the speed of the
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video, playback sound, etc.) [16], spatial (alter the pixels of the frames in a
video) [23], and appearance augmentation (frame blurring, frame rotation, etc.)
[4]. However, most of these techniques were predominantly developed for image
classification tasks and have limited utility for video analysis [24]. Recently, re-
searchers have introduced video action-recognition-specific data augmentation
techniques, such as RandMix, FrameMix and TubeMix [21]. These techniques
work well on video recognition and large-scale TAS. However, little to no effort
has taken place in the data augmentation techniques for small dataset scenarios,
as is the case in most surgical video analysis problems.

Key insights. We observe that current video augmentation techniques are
highly motivated by their image-based counterparts. For example, inspired from
CutMix [23], a recent technique suggests mixing of pixel-tubes from two video
samples [21]. On the other hand, optical flow is a critical and often most differen-
tiating cue for a video sample. However, extending directly from an image-based
augmentation strategy, almost all video augmentation techniques fail to main-
tain flow consistency. For instance, on average, augmented videos of RandMix
[21] have an 80.9% deviation in optical flow from the base videos of the JIG-
SAWS dataset [7], TubeMix [21] with 67.54%, and FrameMix [21] with 48%.
Therefore, the generated augmented video often does not belong to the original
training distribution. Training a model with these samples, especially in scarce
data scenarios, can lead to a model memorizing the samples rather than learning
the intended distribution.

Contributions. (1) We contribute the first-ever non-robotic neurosurgery-spe-
cific Neuro-endoscopic Trainee Simulator (NETS) dataset, which can be used for
the TAS and related problems. The proposed dataset is annotated for temporal
segmentation by a consensus of a group of 3 expert neurosurgeons (30+ years
of experience) from different medical schools. The dataset opens up the doors
for automated skills evaluation for neurosurgery and many other applications.
(2) This is the first augmentation for data-scarce TAS in surgical scenarios. We
propose a video-specific data augmentation technique that does not disturb the
critical optical flow information in a video. Hence, instead of mixing a frame spa-
tially, we propose to augment a video segment temporally only. This helps gener-
ate new pseudo-action boundaries, which are usually scarce in a video. (3) Most
TAS techniques process a temporal window at a time. Since, action/event bound-
aries are scarce in a video, this makes the windows containing two actions (at
the boundary) also scarce, and thus difficult to learn for a deep neural net-
work (DNN). Recognizing this problem, we present a hardness-specific curriculum
specifically for the video analysis tasks, which only trains on single action-label
samples initially and moves to multi-label and augmented samples in the later
epochs. (Fig. 1) (4) Compared to without use of any data augmentation, we
report an average improvement of 7.89%, 5.53%, 2.80% on our NETS dataset,
JIGSAWS [7] and Cholec T-50 [14] respectively, in terms of edit score using our
technique. The reported numbers are improvements averaged over 9 SOTA action
segmentation models using two different temporal feature representations (I3D
and VideoMAE). The proposed technique outperforms the best-performing SOTA
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Fig. 2. Proposed NETS dataset. (a) shows the box-based trainer, (b) shows the class
distribution, (c)-(f) shows a sample frame for each of the classes, pick, move, release,
and background (g),(h) shows the performance of the proposed action segmentation
algorithm on two of the samples

data augmentation technique by 3.94%, thus enabling us to setup a new SOTA
for action segmentation in each of these datasets. The dataset and the complete
source-code will be publicly released post-publication.

2 Proposed methodology

Proposed NETS dataset. We contribute the first ever and the largest surgeon-
generated neurosurgical endoscopic TAS dataset, namely the Neuro-endoscopic
Trainee Simulator (NETS) Dataset for TAS problem. 70 neurosurgery trainees
from 14 hospitals across 3 countries performed the task of “pick and place" the
rings from one peg to another in 6 box-based trainers [18] in a period of 5 years
as shown in Fig. 2. An auxiliary camera was placed to capture the endoscope and
the tool movements of the trainee neurosurgeon. The videos captured from the
auxiliary camera constitute the proposed dataset. The proposed dataset consists
of 174 videos, with each video spanning 60 secs on average. We identify four
activities in the dataset, viz pick, move, release and background. Each of the
activities is defined as follows: (1) Pick: The set of frames encompassing the
period from when the forceps made contact with the ring until the moment when
the ring separated from the base. (2) Move: The period from when the ring
and forceps are tightly in contact with each other and the ring is not present on
the base. (3) Release: The set of frames covering the period from where the
angle between the two teeth of the forceps starts increasing to the time when
the ring is no longer in contact with the forceps. (4) Background: Any other
frame that does not fit into the definition of Pick, Move or Release. Each frame
was annotated independently by three annotators, and the discrepancies were
resolved through consensus. The annotation was then verified by three expert
neurosurgeons. Class label distribution is shown in Fig. 2
Problem formulation. Let a video sample V contains n frames, {f1, . . . , fn}. In
a non augmentation scenario, for any given frame fi ∈ V , we consider δ neighbor-
ing frames from each side, {fi−δ, . . . , fi+δ} to create a temporal window and use
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Fig. 3. Proposed architecture. (a) Proposed video-specific data augmentation. Here,
W refers to one of the temporally consistent, static warping transformations, which
corrupts (e.g. blur) a frame independently, but consistently, across a video. (b) Pro-
posed curriculum learning framework.

it to generate a Temporal Feature Representation (TFR), Fi := g(fi−δ, . . . , fi+δ).
Here, g is a temporal feature map extractor, such as I3D [3] or VideoMAE [20].
The feature maps F are further fine-tuned typically using a smaller neural net-
work h to generate a frame level prediction, ŷi :== h(Fi). Note that ŷi is a k
dimensional probability vector generated after applying the Softmax function on
the last layer logits, and k is the number of action classes. We use ŷji to denote
the predicted probability of jth action class.

2.1 VideoCutMix: Proposed data augmentation technique

Overview. We propose to modify the boundary frames in a temporal window
used for generating the TFRs to synthesize an augmented sample. For a temporal
window, Ti = {fi−δ, . . . , fi+δ}, used to generate TFR for a frame i, we propose to
replace the first β frames, or the last β frames, with consecutive β frames from
another temporal location. These β frames are chosen from a random location
of the same or another video sample. Augmented TFR is generated using these
modified set of frames. Replacing the first or last frames ensures that the flow
is consistent inside the sample and merely a pseudo-action-boundary is created.
Besides nudging the network to focus on the real flow far from the boundary,
the proposed augmentation also helps avoid overfitting on action-label-sequence.
In a small dataset, when the number of action boundaries are small, a DNN
model may potentially overfit frequent action label ordering (e.g. Pick precedes
Move most of the time in NETS dataset). Adding frames from another location,
and potentially different label, help creates new action boundaries which do not
follow such pattern. We train the SOTA action segmentation architectures with
the augmented TFRs and observe improvement in the performance. Fig. 3 visually
describes the proposed video-specific data augmentation technique.
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Mask Generation. Consider two original video samples i, and k, and two
frames fij and fkl respectively. Note that i may or may not be equal to k, i.e.,
frames fij and fkl may or may not come from a same video. However, if i == k,
we ensure non-overlap in the temporal window, by constraining |j − l| ≥ 2δ.
Recall that, the temporal window for extracting TFR is of length (2δ + 1). We
generate a boolean mask vector M of size (2δ + 1) as follows:

M = α× 1β ⊕ 0(2δ+1−2β) ⊕ (1− α)× 1β . (1)

Here 1d and 0d denote a d-dimensional vector of all ones and all zeros respec-
tively. Further, α ∈ {0, 1} is the hyper-parameter deciding the position of the
augmentation, in the beginning for α = 1, and in the end for α = 0. Hyper-
parameter β is the augmentation factor, typically set as an integer 3 or 4 in our
experiments. Further, ⊕ indicates the concatenation of the vectors. The value of
α is chosen randomly for every sample in the input. Therefore, for β = 3, if α is
chosen to be 1, we get M = {1, 1, 1, 0, 0, 0, . . . , 0}(2δ+1) and if we choose α = 0,
we get M = {0, 0, 0, . . . , 0, 1, 1, 1}(2δ+1).
Augmented sample generation. We now obtain augmented samples as:

{f̂i−δ, . . . , f̂i+δ} = M × {fkl−δ, . . . , fkl+δ}+ (1−M)× {fij−δ, . . . , fij+δ}. (2)

That is, we replace the first or last β frames of the set {fij−δ, . . . , fij+δ} from the
corresponding frames in the set, {fkl−δ, . . . , fkl+δ} to generate the augmented
sample. The augmented sample contains the original optical flow and adds at
most one pseudo action boundary.
Static warping, and updating target probability vector. The augmented
samples undergo temporal consistent static warping, i.e. applying the same set of
weak augmentations (e.g., random rotation, random flip) to each frame. Warped
augmented frames are used to generate the TFRs, F̃ . Instead of using the one-
hot vector based on the ground-truth label, we create a k dimensional Softmax
vector, such that the probability of each action class is now as per the actual
proportion of the number of frames belonging to that class in the temporal win-
dow. We use F̃ and the modified target vector to train the action segmentation
model.

2.2 Proposed curriculum learning technique

The proposed curriculum learning mechanism is demonstrated in Fig. 3(b). Con-
sider a video V and a frame fi ∈ V , with its temporal window, Ti, and feature
representation, Fi. If every frame in the temporal window has the same label,
we call Fi as the Unilabel Feature Representation (UFR). Otherwise, we call it
the Multi-label Feature Representation (MFR). Similarly, post-augmentation, a
TFR F̃i is said to be Augmented Unilabel Feature Representation (AUFR) if every
frame responsible for F̃i has the same label. Otherwise, it’s called the Augmented
Multi-label Feature Representation (AMFR).

We argue that UFRs are the easiest samples to learn; therefore, we first fine-
tune the pre-trained network using these training samples. Next, MFRs are used
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Table 1. The performance of our VideoCutMix algorithm on 5 different datasets, using
VideoMAE feature extractor. Here, “H-” refers to HASR architecture [1]

Datasets NETS JNP [7] JS [7] JKT [7] C-T50 [14]
Venue Model Edit F1 Edit F1 Edit F1 Edit F1 Edit F1

MSTCN [6] 95.02 95.18 77.53 78.02 84.04 88.36 78.45 84.67 32.99 38.25CVPR
2019 +Proposed 95.31 95.43 84.86 84.71 86.46 91.26 81.73 88.43 38.99 42.81

ASRF [8] 63.50 75.19 79.52 77.91 86.13 89.31 85.16 88.89 20.90 26.55WACV
2021 +Proposed 92.8 94.83 83.93 84.38 88.34 92.32 90.75 93.46 26.43 34.09

mGRU [1] 95.14 93.56 56.63 62.36 74.98 82.43 70.33 77.65 39.87 40.81ICCV
2021 +Proposed 94.72 93.95 68.59 73.99 81.98 88.01 79.47 87.00 42.94 43.05

H-ASRF [1] 92.87 94.62 89.94 91.33 85.86 90.00 90.68 93.44 23.29 32.93ICCV
2021 +Proposed 93.24 94.14 95.05 96.76 91.85 95.43 91.51 95.45 29.00 39.99

H-MSTCN [1] 91.83 94.07 89.94 91.33 86.8 90.67 90.45 93.54 31.26 41.36ICCV
2021 +Proposed 96.13 95.91 95.10 96.89 91.72 95.38 91.51 95.45 37.98 50.72

H-SSTDA [1] 83.43 89.13 89.75 91.14 86.14 90.42 90.79 93.52 30.11 39.82ICCV
2021 +Proposed 96.22 95.83 95.16 96.88 91.66 95.35 91.48 95.32 36.99 49.75

ASFormer [22] 96.55 93.50 84.22 81.60 81.92 87.77 82.68 87.94 34.36 38.99BMVC
2022 +Proposed 96.64 95.52 83.74 84.03 88.30 91.79 83.28 89.80 38.64 42.76

UVAST [2] 85.81 90.28 36.38 47.38 58.46 70.82 44.86 58.83 49.31 43.19ECCV
2023 +Proposed 89.72 90.95 45.03 56.16 66.25 77.04 56.01 68.15 49.96 43.47

CETNet [19] 95.20 94.51 77.25 83.00 68.40 70.27 79.73 86.65 37.02 41.17MM
2023 +Proposed 95.29 95.64 80.89 87.33 78.32 80.03 84.76 90.54 40.14 42.31

Average Gain 4.39 3.05 6.33 6.91 5.24 4.54 4.00 4.33 4.74 5.04

to fine-tune the network further, followed by AMFRs and AUMRs. Note that in the
proposed setting, we first train the model with the Augmented Multi-label Feature
Representation and then with the Augmented Uni-label Feature Representations.
This is because, in the proposed architecture, we replace β frames from the
base set of frames used to generate TFR and hence, we expect one shift in the
optical flow at the boundary. Thus, AMFRs act as pseudo boundaries between the
actions and are easier to learn, when compared to AUMRs. To avoid catastrophic
forgetting, we use 100% of the samples from the previous sets while fine-tuning
the network with the next set. The fine-tuned model is then used to perform
temporal action segmentation on an unseen video.

3 Results and Discussions

Datasets. We perform our experiments on the proposed NETS dataset and the
publicly available JIGSAWS and Cholec T-50 datasets. JIGSAWS is an endoscopic
skills assessment dataset of 176 videos, split into three parts, namely Suturing
(JS), knot tying (JKT) and needle passing (JNP), approximately 58 mins for
whole dataset. Cholec T-50 (C-50), on the other hand, is a 90-minute dataset
of 50 laparoscopic videos of cholecystectomy. It involves 10 actions such as grasp,
dissect, etc.
Evaluation Metric. We evaluate the performance of action segmentation using
Segmental Edit Score [8], and Frame-wise F1 score at 0.1 IOU. For any frame
fi, the Edit score is the Levenshtein Distance [12] between the ground truth and
the predicted labels for a set of (2δ + 1) frames, [fi−δ, . . . , fi+δ].
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Table 2. The
comparison of
our VideoCutMix
technique against
current SOTA aug-
mentation on the
JIGSAWS-Knot-tying
dataset using I3D
features

UVAST [2] mGRU [1] HASR-ASRF [1]
Algorithm Venue Edit F1@10 Edit F1@10 Edit F1@10
CutMix [23] ICCV19 51.05 62.99 63.09 66.45 63.28 62.28
Cutout [5] ArXiv17 49.59 61.52 63.37 72.86 82.83 80.68
Mixup [25] ICLR18 50.25 59.5 51.87 55.53 66.42 67.53
RandMix [21] CVPR23 43.95 51.91 51.91 52.77 75.59 75.82
TubeMix [21] CVPR23 51.83 59.17 51.79 51.97 77.91 75.05
FrameMix [21] CVPR23 51.63 61.98 60.71 65.75 80.46 77.63
Dynaugment [9] ICLR23 44.51 56.51 51.56 52.97 86.42 85.17

Proposed Technique 54.49 65.32 74.29 81.86 89.11 93.45

Fig. 4. Visualization of the performance of the proposed data augmentation technique
against SOTA methods using UVAST [2] architecture on JIGSAWS-Knot-tying dataset

Implementation Details. We use a batch size of 1. The value of δ is typically
set to 8. The initial learning rate is set to 0.0001, which drops by 0.1 after
every 20 epochs. We set 0.9 as the Nesterov momentum coefficient. We train
the network for 25 epochs on a server with 8 NVidia A100, 40GB GPUs. Other
hyper-parameter details can be found in Table S1 in the supplementary.
Action Segmentation Results. The results of the various SOTA temporal ac-
tion segmentation architectures on NETS, JS, JKT, JNP, and Cholec T-50 datasets
using VideoMAE [20] features is shown in Table 1. Similar results using I3D [3]
features is given in Table S2 of the supplementary material. All the reported
baseline and proposed models were trained using the same set of weak augmen-
tations and hyperparameters.
Effect of dataset size. One observes in Table S2 that as the datasets become
smaller, the improvement gained using our method also increases. Though this
is expected with any data augmentation strategy, we confirm this hypothesis by
testing on a subset of the Breakfast [11] (containing natural images) dataset,
with 50%, 10%, and 5% data. Results are given in Table S3 in the supplementary.
Ablation Analysis - Effect of every component in the proposed archi-
tecture. Table S4 in the supplementary material demonstrates the importance
of each of the components in the proposed architecture.
Comparison with other augmentation methods. Table 2 compares pro-
posed augmentation strategy against the SOTA techniques on the three action
segmentation architectures (UVAST [2], Asformer [22] and HASR-ASRF [1]) us-
ing I3D features on JIGSAWS-Knot-tying dataset. It can be observed that the
proposed architecture outperforms the current SOTA augmentation technique at
least by 1.8% in edit score. Table S5 in the supplementary shows comparison for
other architectures.
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Comparison with other augmentation methods. A few sample outputs are
visualized in Fig. 4. One observes that after augmentation using the proposed
technique, the UVAST model is able to correctly detect the boundaries between
the actions, accurately detect small actions, and reduce the misclassification rate.

4 Conclusion

We proposed a video-specific, flow-consistent, data augmentation technique for
temporal action segmentation in surgical video analysis. The technique relies on
the thesis that optical flow is an important cue for action segmentation and must
not be disturbed during augmentation. The proposed augmentation technique,
when coupled with the proposed curriculum learning, achieved significant per-
formance gain. Though we focused only on temporal action segmentation, we
believe that this work can be extended to other video analysis tasks as well.
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