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Abstract. Semi-supervised medical image segmentation aims to lever-
age limited annotated data and rich unlabeled data to perform accurate
segmentation. However, existing semi-supervised methods are highly de-
pendent on the quality of self-generated pseudo labels, which are prone
to incorrect supervision and confirmation bias. Meanwhile, they are in-
sufficient in capturing the label distributions in latent space and suffer
from limited generalization to unlabeled data. To address these issues,
we propose a Latent Diffusion Label Rectification Model (DiffRect) for
semi-supervised medical image segmentation. DiffRect first utilizes a La-
bel Context Calibration Module (LCC) to calibrate the biased relation-
ship between classes by learning the category-wise correlation in pseudo
labels, then apply Latent Feature Rectification Module (LFR) on the la-
tent space to formulate and align the pseudo label distributions of differ-
ent levels via latent diffusion. It utilizes a denoising network to learn the
coarse to fine and fine to precise consecutive distribution transportations.
We evaluate DiffRect on three public datasets: ACDC, MS-CMRSEG
2019, and Decathlon Prostate. Experimental results demonstrate the ef-
fectiveness of DiffRect, e.g. it achieves 82.40% Dice score on ACDC with
only 1% labeled scan available, outperforms the previous state-of-the-art
by 4.60% in Dice, and even rivals fully supervised performance. Code is
released at https://github.com/CUHK-AIM-Group/DiffRect.

Keywords: Semi-supervised · Medical Image Segmentation · Diffusion
Models · Label Rectification.

1 Introduction
Medical image segmentation is crucial for clinical applications but often re-
quires large amounts of pixel-wise or voxel-wise labeled data, which is tedious
and time-consuming to obtain [17, 19, 18, 1, 28]. Such a heavy annotation
cost has motivated the community to develop semi-supervised learning meth-
ods [10, 20, 14, 38]. Existing semi-supervised image segmentation methods can
be generally categorized into self-training and consistency regularization. For
self-training methods [1, 31, 4, 7, 34, 15, 40, 23], they generate pseudo labels for
unlabeled images, then use the pseudo-labeled images in conjunction with labeled
images to update the segmentation model iteratively. This paradigm could effec-
tively incorporate unlabeled data by minimizing their entropy. For consistency
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regularization methods [5, 27, 21, 30, 35, 9, 22, 37, 33], they are designed based
on the assumption that perturbations should not change the predictions of the
model, and have achieved more promising performance recently. Perturbations
are applied on the input or the network level, and the models are enforced to
achieve an invariance of predictions.

Despite the progress, the semi-supervised medical image segmentation re-
mains challenging due to the following factors. (1) Reliance Risk: Existing
methods typically rely on self-generated pseudo labels to optimize the model [30,
37, 11, 35], which is ill-posed since errors in pseudo labels are preserved during it-
erative optimization. The overfitting to incorrect supervision could lead to severe
confirmation bias [16] and considerable performance degradation. Besides, they
do not fully utilize the category-wise correlation in the pseudo labels, and the
label quality is sensitive to the perturbation design and network structure. (2)
Distribution Misalignment: Most methods only apply consistency regulariza-
tion and auxiliary supervision at the output mask level to encourage the model
to produce consistent mask predictions between different perturbations [27, 5].
However, these approaches are insufficient in capturing the semantics in the la-
tent space and tend to overlook the underlying label distributions, resulting in
limited generalization to unlabeled data.

To address the reliance risk issue, we first propose a Label Context Calibration
Module (LCC). Different from methods that directly use the self-generated
pseudo labels, LCC calibrates the biased semantic context, i.e., the relation-
ships between different semantic categories, and reduce the errors in the pseudo
labels. It starts with a semantic coloring scheme that encodes the one-hot pseudo
labels and ground truth masks into the visual space, and subsequently feeds them
into a semantic context embedding block to adjust the features of the pseudo
labels in the latent space. Notably, LCC introduces explicit calibration guidance
by encoding the dice score between the pseudo labels and the ground truth,
thereby providing more reliable calibration directions for model optimization.

To tackle the distribution misalignment problem, some previous works have
proposed to model data distributions with VAE [41] or GAN [42]. However, their
adversarial training scheme could suffer from mode collapse and conflict between
generation and segmentation tasks, resulting in suboptimal performance. Differ-
ent from them, the denoising diffusion probabilistic model (DDPM) is a new class
of generative models trained using variational inference [8, 24, 12, 13], which al-
leviates the above problem by formulating the complex data distribution with
probabilistic models. Therefore, we design a Latent Feature Rectification Mod-
ule (LFR), which models the consecutive refinement between different latent
distributions with a generative latent DDPM [25]. LFR leverages the power of
DDPM to learn the latent structure of the semantic labels. Specifically, it first
applies Gaussian noise on fine-grained label features with a diffusion schedule,
then uses the coarse-grained label features as conditions to recover the clean fea-
ture. With the denoising process, the consecutive transportations of coarse to fine
and fine to precise distributions of the pseudo labels are formulated and aligned,
and the pseudo labels are progressively rectified for better supervision. Based
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on LCC and LFR, we construct a semi-supervised medical image segmentation
framework named Latent Diffusion Label Rectification Model (DiffRect). Ex-
tensive experimental results show that our method outperforms prior methods
by significant margins.

2 Methodology

2.1 Preliminary: Conditional DDPM

DDPM is a class of latent variable generative model that learns a data distribu-
tion by denoising noisy images [8]. The forward process diffuses the data samples
with pre-defined noise schedules. Concretely, given a clean data z0, sampling of
zt is expressed in a closed form:

q(zt∥z0) = N (zt;
√
αtz

0, (1− αt)I), (1)

where αt is the noise schedule variable [24, 8]. During the reverse process, we
are given an optional condition ρ [6], and each step is expressed as a Gaussian
transition with learned mean µϵ and variance σϵ from the denoising model ϵ:

p
(
zt−1 | zt, ρ

)
:= N

(
zt−1;µϵ (z

t, t, ρ) , σϵ (z
t, t, ρ) I

)
. (2)

By decomposing the above equation, we have:

zt−1 ← 1
√
αt

(zt − 1− αt√
1− αt

ϵ(zt, t, ρ)) + σϵη, (3)

where η ∼ N (0, I) is a sampled noise that ensures each step is stochastic. In this
work, we extend the conditional DDPM to the latent space of pseudo labels, and
model the distribution transportations for label rectification.

2.2 Label Context Calibration Module (LCC)

Existing semi-supervised training schemes that rely extensively on self-generated
pseudo labels are often ill-posed, where errors in low-quality pseudo labels ac-
cumulate and degrade performance. To address this issue, we introduce LCC
that effectively captures and calibrates the semantic context within the visual
space, thereby mitigating the impact of noisy labels. As in Fig. 1(a), given the
one-hot pseudo labels ys, yw ∈ RH×W×C with height H and width W from the
segmentation network, we encode them to semantic pseudo labels ms and mw

with dimensions of RH×W×3, using a proposed semantic coloring scheme (SCS).
Concretely, for a dataset that contains C different classes, we build a color

set MC that is composed of C RGB colors, and each color is represented by a
tuple of three values within the range [0, 255]. We maximize the color difference
between each encoded category to avoid semantic confusion. Therefore, it can
be represented by a functional mapping f : C →MC , which is defined as:

m(h,w) = f(y(h,w)), ∀h ∈ [1, 2, ...,H], w ∈ [1, 2, ...,W ], (4)

where m is the semantic pseudo label in the visual space, and m(h,w) repre-
sents the mapped RGB color of the pixel at location (h,w) in m. The y(h,w)
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Fig. 1. Overall framework of DiffRect. (a) Label Context Calibration Module (LCC).
(b) Latent Feature Rectification Module (LFR). (c) Segmentation Network.

represents the class of the corresponding pixel in one-hot mask y. The semantic
coloring scheme can effectively incorporate color information into the segmen-
tation task, which enables the model to exploit additional cues with the rich
semantics from colors, and improves the discrimination ability [32, 3] as well as
the interpretability of the model.

To perform context calibration with the semantic labels, we design a seman-
tic context embedding block Bsem, which embeds the pseudo labels to the latent
features zs, zw, zl with the dimensions of RH

16×
W
16×256. Specially, additional cal-

ibration guidance (CG) τu for unlabeled data and τ l for labeled data are also
encoded into the block using the sinusoidal embeddings [8, 29],

{zs, zw} = Bsem(ms,mw∥τu) for unlabeled data,

{zw, zl} = Bsem(mw,ml∥τ l) for labeled data,
(5)

where the τu and τ l values for unlabeled and labeled data are computed using
the dice coefficient between the one-hot segmentation masks of different qualities,
which is denoted as follows:

τu = Dice(ys, yw), τ l = Dice(yw, yl). (6)

By using the dice coefficient as the calibration guidance factor, the model can si-
multaneously measure the quality of pseudo labels and integrate this information
into the learning process. It enables the model to better capture the semantic
context and refine the pseudo labels for both unlabeled and labeled data.

2.3 Latent Feature Rectification Module (LFR)

To address the distribution misalignment issue between the pseudo labels with
different levels of quality, we propose a Latent Feature Rectification Module
(LFR), which is illustrated in Fig. 1(b).
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Concretely, LFR applies a latent diffusion process to model the transporta-
tion of label quality distributions. For each unlabeled data Iu, the strongly and
weakly semantic context embedding zs and zw are first obtained with LCC. We
then construct a diffusion process from zw to the diffused noisy feature zTw with
T timestamps as follows:

zTw =
√
αT z

T−1
w +

√
1− αT η

T−1

= · · · =
√
αT zw +

√
1− αT η,

(7)

where αT and αT are the schedule variables in the diffusion forward process,
(e.g., cosine [24]), and αT =

∏T
i=1 αi. The ηt is the corresponding noise sam-

pled from Gaussian distribution at the t-th step. Then, we train a denoising
U-Net ϵ to learn to reverse this process. Since the individual reverse diffusion
process is unconditioned, we add zs as the conditional input and also feed it
into the denoising model. Therefore, the model is encouraged to learn the distri-
bution transportation from coarse-grained masks p(zs) (strong pseudo labels) to
the latent distributions of fine-grained masks p(zw) (weak pseudo labels), where
we denote it as a strong-to-weak transportation (S2W). The reverse diffusion is
formulated as the following Markov chain:

pϵ
(
z0:Tw

)
:= p

(
zTw

) T∏
t=1

pϵ
(
zt−1
w | ztw, zs

)
, zTw ∼ N (0, I)

pϵ
(
zt−1
w | ztw, zs

)
:= N

(
zt−1
w ;µϵ

(
ztw, t, zs

)
, σϵ

(
ztw, t, zs

)
I
)
,

(8)

where µ and σ are the predicted data mean and variance from the denoising U-
Net model. For the training with unlabeled input, the latent loss for optimization
can be expressed as follows:

LLat-U = Ezw,t [∥zw − rw∥2] , (9)

where rw = ϵ
(
zTw , zs, t

)
, which is the reconstructed version of the weakly seman-

tic context embedding zw. The objective minimizes the ℓ2 distance between the
clean and denoised feature and encourages the model to learn the distribution
transportation from a coarse pseudo label to a fine pseudo label.

Similarly, we can obtain the weak semantic context embedding of labeled
data zw and the ground truth zl. We then learn the reverse process that recovers
zl based on the T -timestamp diffused noisy feature zTl , with the zw as condition:

pϵ
(
z0:Tl

)
:= p

(
zTl

) T∏
t=1

pϵ
(
zt−1
l | ztl , zw

)
, zTl ∼ N (0, I)

pϵ
(
zt−1
l | ztl , zw

)
:= N

(
zt−1
l ;µϵ

(
ztl , t, zw

)
, σϵ

(
ztl , t, zw

)
I
)
,

(10)

and the training objective for the reconstructed feature rl = ϵ
(
zTl , zw, t

)
is:

LLat-L = Ezl,t [∥zl − rl∥2] . (11)

With the above latent diffusion process, the continual distribution transporta-
tions from fine-grained mask distributions p(zw) (weak pseudo labels) to precise
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mask distributions p(zl) (ground truth) are also formulated in the latent space,
which is denoted as the weak-to-groud truth transportation (W2G). The denois-
ing U-Net is hence capable to achieve latent feature rectification.

Afterwards, the weak pseudo labels of unlabeled data are fed into the de-
noising U-Net for obtaining the rectified features with progressive denoising.
Specifically, we randomly sample a Gaussian noise rTl ∼ N (0, I) as the input
of the denoising U-Net, which simulates the T -timestamp noisy feature of the
rectified pseudo label yr. The rectified feature rl is generated via a progressive
reverse diffusion process, with the weak pseudo label features zw as condition.
Mathematically, a single denoising from step t to t− 1 is formulated as:

rt−1
l ← 1

√
αt

(rtl −
1− αt√
1− αt

ϵ(rtl , t, zw)) + σϵη, (12)

where η ∼ N (0, I) which ensures each step is stochastic as in DDPM [8]. The
rectified label is obtained with an upsampling of the feature rl to the input
resolution yr = Upsample(rl), which is utilized as a better and more precise
supervision signal for the segmentation model.

2.4 Loss Function

The training of the DiffRect frameworks includes two parts: (1) the optimization
of segmentation U-Net θ (with Seg Loss) and (2) the joint optimization of the
rectification components Bsem and ϵ (with Diff Loss). The overall loss is:

LDiffRect = LSeg
Semi + LRect︸ ︷︷ ︸

Seg Loss

+LLat
Semi + λ1LLat-U + λ2LLat-L︸ ︷︷ ︸

Diff Loss

, (13)

where LSeg
Semi and LLat

Semi are the semi-supervised losses for segmentation as in [27].
The λ1 and λ2 are trade-off factors to balance the contribution of each term.
LRect is the rectified supervision loss between yw and the rectified pseudo label
yr, where the summation of cross-entropy and Dice score are used:

LRect = CE(yw, yr) + Dice(yw, yr). (14)

During inference, the input is directly fed into segmentation network in Fig. 1(c)
to produce the segmentation result, thus no extra inference cost is required.

3 Experiments

3.1 Experimental Setup

We examine all methods with identical settings for fair comparison, and trained
on a NVIDIA 4090 GPU for 30k iterations. For the Bsem which downsamples
the input to H

16 ×
W
16 , we use two 3 × 3 convolution layers followed by BN and

LeakyReLU before the 2× downsample in each stage, and repeat for four stages.
The Denoising U-Net ϵ down and upsamples the input by 4×, which also uses
two 3×3 convolution layers per stage. The multi-scale image feature is embedded
into the model via concatenation as in [36]. For the weak perturbation, we apply
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Table 1. Segmentation results on the ACDC validation and test sets.

Method
Labeled ACDC Validation Set ACDC Test Set
Ratio Dice↑ Jac↑ HD95↓ ASD↓ Dice↑ Jac↑ HD95↓ ASD↓

UAMT [39]

1%

42.28 32.21 40.74 18.58 43.86 33.36 38.60 18.33
FixMatch [27] 69.67 58.34 37.92 14.41 60.80 49.14 36.81 14.75

CPS [5] 56.70 44.31 24.97 10.48 52.28 41.68 20.38 7.35
ICT [30] 43.03 30.58 34.92 15.23 42.91 32.81 25.42 10.80

MCNetV2 [35] 57.49 43.29 31.31 10.97 49.92 39.16 24.64 8.47
INCL [43] 77.80 66.13 11.69 3.22 67.01 56.22 13.43 3.35

DiffRect (Ours) 82.40 71.96 10.04 2.90 71.85 61.53 5.79 2.12
UAMT [39]

5%

72.71 60.89 21.48 7.15 69.93 58.45 17.01 5.25
FixMatch [27] 83.12 73.59 9.86 2.61 74.68 64.12 11.18 2.93

CPS [5] 75.24 64.67 10.93 2.98 74.67 63.51 9.37 2.55
ICT [30] 74.20 62.90 17.01 4.32 73.10 60.69 11.92 3.70

MCNetV2 [35] 78.96 68.15 12.13 3.91 75.86 65.20 9.85 2.88
INCL [43] 85.43 75.76 6.37 1.37 80.64 70.78 5.29 1.42

DiffRect (Ours) 86.95 78.08 4.07 1.23 82.46 71.76 7.18 1.94
UAMT [39]

10%

85.14 75.90 6.25 1.80 86.23 76.72 9.40 2.56
FixMatch [27] 88.31 79.97 7.35 1.79 87.96 79.37 5.43 1.59

CPS [5] 84.63 75.20 7.57 2.27 85.61 75.76 9.29 3.00
ICT [30] 85.15 76.05 4.27 1.46 86.77 77.43 8.01 2.16

MCNetV2 [35] 85.97 77.21 7.55 2.11 88.75 80.28 6.16 1.64
INCL [43] 88.28 80.09 1.67 0.49 88.68 80.27 4.34 1.13

DiffRect (Ours) 90.18 82.72 1.38 0.48 89.27 81.13 3.85 1.00
Supervised [26] 100% 91.48 84.87 1.12 0.34 91.65 84.95 1.14 0.50

random flipping and rotation. For the strong perturbation, we apply random
Gaussian blur and additional random image adjustments, including contrast,
sharpness, and brightness enhancement. For ACDC, we test the 1%, 5%, and
10% labeling regimes following [20]. For MS-CMRSEG 2019, 20% labeling regime
is tested, while 10% labeled data is used in Decathlon Prostate.

3.2 Comparison with State-of-the-art Methods

We validate the effectiveness of the proposed approach on the ACDC dataset [2]
in Tab. 1. Our method shows superior results under all labeling regimes. Com-
pared with MCNetV2 [35], our method possesses superior capability with incre-
ments of 24.91%, 7.99%, 4.21% in Dice, 28.67%, 9.93%, 5.51% in Jaccard on the
validation set with 1%, 5%, and 10% scans available. DiffRect displays better seg-
mentation performance even when the labeled samples are extremely scarce (e.g.
82.40% Dice with 1% scans available), suggesting it can model the transportation
of the pseudo label distributions precisely and produce refined masks. Results in
MS-CMRSEG 2019 are shown in Tab. 2. DiffRect shows consistent performance
gain on all metrics, with 86.78% in Dice, 77.13% in Jaccard, 6.39mm in HD95,
and 1.85mm in ASD, outperforming the state-of-the-art method INCL [43] by
2.45% Dice, 3.21% Jaccard, 3.56mm HD95, and 0.76mm in ASD, respectively.
On Decathlon Prostate in Tab. 3, DiffRect remains showing compelling results,
demonstrating its capability in various modalities.
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Table 2. Segmentation results on MS-
CMRSEG 2019 with 20% data labeled.

Method Dice ↑ Jac↑ HD95↓ ASD↓
UAMT [39] 84.27 73.69 12.15 4.18

FixMatch [27] 84.31 73.57 17.79 4.81
CPS [5] 83.66 73.03 15.01 4.30
ICT [30] 83.66 73.06 17.24 4.85

MCNetV2 [35] 83.93 73.45 13.10 3.39
INCL [43] 84.33 73.92 9.95 2.61
DiffRect 86.78 77.13 6.39 1.85

Supervised [26] 88.19 79.28 4.21 1.32

Table 3. Segmentation results on De-
cathlon Prostate with 10% data labeled.

Method Dice↑ Jac↑ HD95↓ ASD↓
UAMT [39] 40.91 29.13 28.32 10.45

FixMatch [27] 54.70 41.07 16.82 5.24
CPS [5] 43.51 31.18 26.93 8.31
ICT [30] 39.91 28.95 24.73 7.59

MCNetV2 [35] 40.58 28.77 21.29 7.11
INCL [43] 55.67 41.91 31.09 15.78
DiffRect 62.23 48.64 10.36 3.41

Supervised [26] 73.81 61.25 7.28 1.94

Table 4. Ablation study of the proposed
modules.

Method w/o Dice↑ Jac↑ HD95↓ ASD↓
Baseline - 69.67 58.34 37.92 14.41
+LCC SCS 73.83 61.83 29.49 11.71

CG 76.12 64.69 26.24 8.31
- 78.28 66.97 20.46 5.60

+LCC S2W 79.97 69.31 14.07 4.91
& LFR W2G 78.57 66.38 21.07 5.91

- 82.40 71.96 10.04 2.90

Table 5. Ablation study of different cal-
ibration guidance choices in LCC.

Choice Dice↑ Jac↑ HD95↓ ASD↓
Dice 82.40 71.96 10.04 2.90
Jaccard 82.37 71.82 11.33 2.87
Fixed 80.34 69.67 14.97 4.47
Random 80.60 69.99 13.15 3.75
Both 81.67 71.45 10.28 2.47

3.3 Further Analysis

Ablation study of the proposed modules. We evaluate the effect of in-
dividual modules in DiffRect in Tab. 4. Adopting LCC achieves 78.28% Dice
and 66.97% Jaccard, with 8.61% and 8.63% gains compared with the Fixmatch
baseline [27]. Removing the semantic coloring scheme (SGS) shows a large per-
formance drop (73.83% Dice and 61.83% Jaccard), showing the importance of
exploiting the semantics in the visual domain. No calibration guidance (CG)
causes 2.16% Dice drop due to the impact of noisy calibration directions. Adding
LFR improves Dice by 4.12% and 10.42mm in HD95. Removing the strong to
weak transportation (S2W) shows a 2.43% Dice drop while removing the weak
to ground truth (W2G) causes a severe Dice drop to 78.57%. The results demon-
strate the necessity of each sub-component.

Different Calibration Guidance Choices. To analyze the effectiveness
and the optimal choice of calibration guidance, experiments were conducted to
compare the performance of models trained with different calibration guidance
in Tab. 5, including Dice score, Jaccard score, Fixed (using a fixed value 0.5),
Random (using a random sampled value within 0∼1), and Both (using the sum-
mation of Dice and Jaccard). It is shown that Dice, Jaccard, and Both have
similar performance, and outperform the fixed and random strategies, which
validates the reliable directions provided for optimization.
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4 Conclusion
In this paper, we identify the reliance risk and distribution misalignment is-
sues in semi-supervised medical image segmentation, and propose DiffRect, a
diffusion-based framework for this task. It comprises two modules: the LCC
aims to calibrate the biased relationship between classes in pseudo labels by
learning category-wise correlation, and the LFR models the consecutive trans-
portations between coarse to fine and fine to precise distributions of the pseudo
labels accurately with latent diffusion. Extensive experiments on three datasets
demonstrate that DiffRect outperforms existing methods by remarkable margins.
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