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Abstract. Post-surgical evaluation and quantification of residual tu-
mor tissue from magnetic resonance images (MRI) is a crucial step for
treatment planning and follow-up in glioblastoma care. Segmentation of
enhancing residual tumor tissue from early post-operative MRI is par-
ticularly challenging due to small and fragmented lesions, post-operative
bleeding, and noise in the resection cavity. Although a lot of progress
has been made on the adjacent task of pre-operative glioblastoma seg-
mentation, more targeted methods are needed for addressing the specific
challenges and detecting small lesions. In this study, a state-of-the-art
architecture for pre-operative segmentation was used, trained on a large
in-house multi-center dataset for early post-operative segmentation. Var-
ious pre-processing, data sampling techniques, and architecture variants
were explored for improving the detection of small lesions. The models
were evaluated on a dataset annotated by 8 novice and expert human
raters, and the performance compared against the human inter-rater vari-
ability. Trained models’ performance were shown to be on par with the
performance of human expert raters. As such, automatic segmentation
models have the potential to be a valuable tool in a clinical setting as an
accurate and time-saving alternative, compared to the current standard
manual method for residual tumor measurement after surgery.
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1 Introduction

Glioblastoma is the most common primary malignant brain cancer in adults,
requiring a multidisciplinary treatment approach consisting of maximum safe
surgical resection followed by radiation and chemotherapy [6]. Still, the patient’s
prognosis remains poor with a median survival of only 12 months [18]. While ex-
tensive surgical resection is associated with longer survival [5], the significant tu-
mor invasiveness renders a complete removal of all tumor cells unfeasible in most
cases. The extent of resection (EOR), computed after surgery, is the ratio be-
tween surgically removed tumor volume and pre-operative tumor volume. There-
fore, an utmost accurate EOR estimation relies on optimal segmentation of the
fullest tumor extent both pre- and post-operatively. In current clinical practice,
the residual tumor volume is estimated manually either through eye-balling [1] or
according to the Response Assessment in Neuro-Oncology (RANO) criteria [20].
In the latter, the volume is measured as the bi-dimensional product of the largest
axial diameter of the residual enhancing tumor. Exact manual post-operative
volume segmentation would be favorable but is very time-consuming. In addi-
tion, this task is heavily expertise-dependent, with a high inter- and intra-rater
variability [1, 19]. The MICCAI Brain Tumor Segmentation (BraTS) Challenge
[14] has enabled many contributions on the task of pre-operative glioblastoma
segmentation in recent years. The state-of-the-art for the task is represented by
the winning challenge teams every year. Recently, the best-performing models
have all been modified and ensembled versions of the U-Net [17] architecture,
the nnU-Net in 2020 [11, 10], an extended version of nnU-Net in 2021 [13], an
ensemble comprising nnU-Net, DeepSeg and DeepSCAN in 2022 [21], and finally
an ensemble of nnU-Net and Swin UNETR trained on synthetic data in 2023 [7].
Yet, no large dataset for early post-operative segmentation is currently openly
available. As such, much less progress has been made on this task. A few fully
automated methods have been proposed for follow-up post-operative images [8,
12], most of which were trained on the BraTS dataset and fine-tuned on local
datasets consisting of follow-up MRI scans. However, follow-up MRI scans were
usually acquired from 3-12 months after surgery and not within the 72-hour
time frame after surgical resection for early post-operative MRI. Hence, tumor
regrowth and enhancement due to reparative changes in the tissue after surgery
might be visible. A recent study presented a new dataset consisting of early
post-operative and pre-operative MRI scans from 956 patient originating from
12 hospitals, with enhancing tumor tissue annotated by experts in both the pre-
and post-operative scans [9]. Two top-performing architectures for pre-operative
glioblastoma segmentation were trained: the nnU-Net [11] and AGU-Net [3].
Both architectures were able to segment residual tumor on an expert level using
only two early post-operative MRI (EPMR) scans. The nnU-Net architecture,
leveraging a patch-wise approach, had a higher pixel- and patient-wise sensitivity
and achieved a superior segmentation performance compared to the AGU-Net
architecture. However, nnU-Net also had a higher false positive rate and was un-
able to identify patients with gross total resection (i.e., without residual tumor).
The AGU-Net architecture, using full MRI volumes as input, achieved a better
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Fig. 1. Overview of the segmentation pipeline, using two early post-operative MRI
scans (i.e., T1-weighted and contrast-enhanced T1-weighted. A patch-wise AGU-Net
architecture with 963 voxels was trained.

classification of patients with gross total resection, while maintaining a similar
segmentation performance as human expert raters.

In this work, the focus was brought towards improving early post-operative
glioblastoma segmentation with the aim of training a model able to achieve
satisfactorily segmentation and classification performance, on par with human
expert raters and thus usable in a clinical setting. From the advantages of the
models presented in [9], the first contribution was to investigate the particular
challenges of the problem, namely the extreme class imbalance as well as the
small and fragmented lesions. As a second contribution, an investigation of the
impact of the ground truth quality was performed, through a qualitative analysis
and interpretation of the results by comparison with several human expert raters.
A deeper understanding of the challenges in early post-operative segmentation
is provided, together with technical and clinical perspectives for improvement
moving forward.

2 Materials and Methods

2.1 Data

A dataset comprising early post-operative MRI (EPMR) scans from 956 pa-
tients, with manual segmentations in 3D by expert neuroradiologists and neuro-
surgeons, was used in this study. Among these patients, 604 (65%) exhibitied an
enhancing residual tumor (RT), whereas 352 (35%) were gross total resections
(GTR), i.e. with no visible enhancing residual tumor. The data originates from
12 different hospitals in Europe and the US, and the data origin and distribution
across hospitals has been described in a previous study [9]. Study protocols were
approved by local regional ethics committees in the respective countries of data
origin.

Test set All 73 patients from one hospital was kept outside training as an
external test set, to ensure an unbiased evaluation of the generalizability of the
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models. The external test set included a subset of 20 patients annotated by 8
annotators with different levels of experience, grouped into 4 novice and 4 expert
annotators. This subset, hereby referred to as the inter-rater test set, was used
in a previous study for evaluating the inter-rater agreement of manual post-
operative segmentation [19], and was used to compare the models performance
against the performance of human annotators. Additionally, all 73 patients in
the entire external test set had been previously annotated by an independent
expert, which were used as ground truth for the main evaluation and comparison
of experiments, as the size of the inter-rater test set was quite limited.

2.2 Methods

All experiments were conducted using a 3D patch-wise (PW) AGU-Net archi-
tecture [3]. This architecture was selected as a basis model because it was shown
in a previous study [9] that this architecture achieved a similar segmentation
performance as human expert raters and the nnU-Net, while also achieving a
reasonable classification performance. The Attention component of the AGU-
Net was also deemed important for the network to locate the area of the tumor.
An overview of the proposed method is shown in Figure 1. The patients EPMR
T1w-CE and T1w sequences were used as input for training as adding more
sequences was shown to not improve segmentation performances [9].

Sampling strategies for handling the extreme class imbalance One of
the main challenges of early post-operative segmentation is the extreme class
imbalance between the residual tumor tissue class and the background. Indeed,
35% of the patients in the dataset were defined as GTR, having no enhancing
residual tumor. Among the remaining 65% of the patients, most tumors were
extremely small with an average tumor volume of 3ml. For comparison, the
average pre-operative tumor volume lies around 35ml. The class imbalance in-
creases when training a patch-wise model as more patches not overlapping with
the residual tumor will lead to an even higher portion of data samples with no
positive voxels. In experiment 1-5, different sampling strategies for handling the
class imbalance were investigated.

Impact of network levels and kernel size Another main challenge of early
post-operative segmentation is the thin and fragmented structure of the residual
tumors, generally spread around the resection cavity. In addition, the resolution
of the input images is incrementally reduced by a factor of two for each level
down the encoder path of U-Net shaped architectures. As such, small structures
with a thickness of only a few voxels will rapidly disappear without contributing
to the deeper architecture’s feature maps. To better capture the small structures,
a network with larger kernel sizes and fewer encoding levels might be of interest
(cf. experiments 6 and 7).
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Comparison with human inter-rater variability The Dice metric has well-
known limitations when segmenting small or non-existent structures [16], and few
reference works or benchmarks for early post-operative segmentation have been
published. Therefore, a thorough assessment of realistic expectations for model
performance, compared against human annotators, was deemed imperative. To
this end, the annotations from the inter-rater test set were used to generate dif-
ferent consensus agreement annotations. An average annotation of human raters
presents the benefit to minimize the inter-rater variability when used to bench-
mark a models segmentation and classification performance, while at the same
time assessing the inter-rater agreement amongst all annotators. A consensus
agreement was created for each of the two groups of raters (i.e., experts and
novices), and one for the ensemble of all raters. A voxel was counted as positive
if it had been annotated by more than half of the annotators, e.g. by at least 3
on a group level, and at least 5 for all annotators. In addition, a union of all an-
notations was created, where all voxels annotated by at least one annotator were
counted as positive. Dice scores were computed for the consensus agreement and
union annotations using the independent single rater ground truth annotations
as reference. The purpose of this was two-fold: to contrast the model performance
against human rater performance using a reference completely independent of
both, and to assess the quality of the single rater ground truth annotations. Fi-
nally, the Dice score was computed for the different consensus annotations using
the union of annotations as a reference, in order to assess the agreement of the
majority votes and the union of all raters.

Experiments A total of seven experiments were conducted in this work, as
summarized in the following.

1. PW AGU pos: Train on positive (with residual tumor) patches of size 1603 voxels.
2. PW AGU all: Train on all available samples (i.e., positive and negative).
3. PW AGU fine Fine-tuning PW AGU post-model on all available samples.
4. PW AGU rand: Patch-size set to 963 voxels and training with sampling only

one patch randomly from each patient during each epoch.
5. PW AGU tumor: Sample 50% of the patches centered around a tumor lesion,

and 50% at random. One patch was selected from each patient in each epoch.
6. PW AGU ker7: AGU-Net model with two levels and a 7-voxel kernel size.
7. PW AGU ker5: AGU-Net model with three levels and a 5-voxel kernel size.

3 Results

3.1 Implementation details

The study was implemented in Python 3.8 using Tensorflow 2.8.0, on a machine
with a Tesla V100S (32GB) GPU. All models were trained from scratch for 300
epochs with early stopping (patience 15), batch size of 2 to 4, and accumulated
gradients [15] of 8 to 16, always giving an effective batch size of 32. The Dice
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loss was used with the Adam optimizer, using an initial learning rate of 10−4.
As data augmentation, random flipping, rotation, and translation were applied.
The implementation and trained weights of the best trained model are available
through the open source software Raidionics [4], and the code for validation is
available on Github [2]. The data used in this project is not openly available due
to patient privacy, but access can be granted through collaborative projects.

Table 1. Results for all experiments, compared against patch-wise (PW) nnU-Net,
and full volume (FV) AGU-Net, reported over an external test set of 73 patients.

Model
Segmentation Classification

Dice HD95 (mm) Sens. Spec. bAcc

PW AGU post 49.78±25.87 22.93±34.26 86.27 36.36 61.32
PW AGU all 46.58±27.88 23.61±39.18 82.35 50.00 66.18
PW AGU fine 48.18±27.28 23.61±35.13 86.27 45.45 65.86
PW AGU rand 50.10±25.20 22.52±34.06 88.24 50.00 69.12
PW AGU tumor 49.95±26.48 20.78±33.99 90.20 50.00 70.10
PW AGU ker7 47.14±25.39 27.67±37.48 88.24 36.36 62.30
PW AGU ker5 51.09±23.76 25.29±33.72 92.16 27.27 59.71

PW nnU-Net 60.08±21.09 20.18±32.15 96.08 18.18 57.13
FV AGU-Net 45.04±28.21 20.65±35.57 82.35 63.64 72.99

3.2 Experiment results

Experimental results on sampling strategies, architecture levels, and kernel sizes
are summarized in Table 1. The models’ segmentation performances was evalu-
ated using the Dice score and 95% Hausdorff distance (HD95). Additionally, the
models were evaluated on the auxiliary task of classification of residual tumor
(RT) and gross total resection (GTR), based on thresholding of the predicted
tumor volumes. The classification performance was evaluated in terms of the
Balanced Accuracy (bAcc), which is the mean of the Sensitivity (Sens.) and
Specificity (Spec.), to account for the class imbalance. Results obtained with pre-
viously trained models [9] (i.e., patch-wise nnU-Net and full-volume AGU-Net)
have been included for reference. Dice scores are reported only for the patients
with residual tumor according to the ground truth annotation. Most experi-
ments resulted in similar average Dice scores and Hausdorff distances, but the
classification results varied more across the experiments. None of the patch-wise
AGU-Net models achieved similar segmentation performance to the nnU-Net.
However, the high rate of false positives and low patient-wise specificity make
nnU-Net models unsuitable for use in a clinical setting. All models achieved
slightly higher Dice scores than the full-volume AGU-Net model, although the
classification performances were lower due to lower specificity. Experiment 5 de-
livered the top-performing model, achieving a high Dice score and low Hausdorff
distance. Overall, model 5 represents the best trade-off between patient-wise
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sensitivity and specificity, with the highest balanced accuracy (bAcc) of 70%.
To summarize, the sampling strategies for handling the extreme class imbalance
only led to incremental improvements in the Dice scores. Nevertheless, the trade-
off between sensitivity and specificity for classification seemed to improve slightly
with smaller patches and higher sampling frequency of the area encompassing
the residual tumor (PW AGU tumor). The last experiment with fewer encoding
levels and kernel size 5 achieved the highest Dice score and patient-wise sensi-
tivity out of all experiments at the cost of a low specificity. Architecture and
hyper-parameters optimization appear to provide only marginal performance
improvement. While ensembling schemes leveraging predictions from multiple
models has shown an increase in Dice score, the cost often is a worse trade-off be-
tween sensitivity and specificity. The reported nnU-Net results in the table were
obtained from ensembling five models. The nnU-Net framework, the cornerstone
of all top-performing submissions to the BraTS challenge over the last 4 years,
optimizes the hyperparameters of the U-Net architecture and pre-processing,
for the particular dataset at hand. As shown by the 2023 winning submission,
having access to a larger training dataset through synthetic data generation, in
addition to ensembling of an large number of models, yielded the best perfor-
mance. However, both ensembling and generation of synthethic data is costly
both in terms of computational resources and runtime, making trained models
less affordable for clinics. The quality of the annotations and the definition of
the gold standard is clearly a limiting factor for performance in the early post-
operative case, which will be analysed more in-depth in the comparison with the
human inter-rater variability.

Table 2. Results for PW AGU tumor on the inter-rater test set, compared against
PW nnU-Net, FV AGU-Net, and the consensus agreement annotations.

Experiment
Segmentation Classification

Dice HD95 (mm) Sens. Spec. bAcc

PW AGU tumor 48.92±28.30 13.52±9.88 90.00 60.00 75.00

PW nnU-Net 55.37±23.14 17.06±15.07 90.00 30.00 60.00
FV AGU-Net 49.78±28.36 14.56±10.67 80.00 80.00 80.00

consensus-novices 30.48±29.57 18.56±12.52 60.00 90.00 75.00
consensus-experts 50.03±27.11 9.15±5.88 80.00 80.00 80.00
consensus-all-annotators 44.86±30.48 10.09±6.80 70.00 90.00 80.00

3.3 Comparison with human inter-rater variability

The results over the inter-rater test set for PW AGU tumor, PW nnU-Net,
FV AGU-Net, and the consensus agreement annotations are reported in Table 2.
The model from PW AGU tumor outperforms the consensus agreement annota-
tion for the novices and the ensemble of all raters in terms of Dice, and performs
at a similar level as the expert consensus annotations. The human raters all have
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a higher patient-wise specificity than the model from PW AGU tumor, but the
model has a higher sensitivity. The discrepancy between the human raters in
terms of Dice score illustrates the level of difficulty of the task. While the Dice
score is fundamental for assessing a segmentation model’s performance, clear
limitations exist for evaluating a model’s usefulness in clinical practice. There-
fore, models’ performance should also take into account more clinically relevant
metrics such as volume agreement or the ability to classify patients with residual
tumor and gross total resections.

In Figure 2, the predicted volumes from PW AGU tumor are plotted against
3 different reference volumes: the ground truth annotations, the consensus agree-
ment annotations, and the union of all raters annotations. The correlation is high
between the model and both of the first two references, but the agreement seems
to be higher with the consensus agreement annotation as the slope is closer to 1.
Using the consensus agreement annotation as a reference, the average Dice score
with the model predictions was 0.49 vs 0.28 for the union of all annotations, indi-
cating a high agreement between the model and consensus agreement compared
to the inter-rater agreement. Annotation by consensus agreement of multiple
experts are usually considered to be of higher quality than single annotations.
Models showing better agreement with the consensus agreement annotations
should therefore be considered to achieve higher performance, illustrating ro-
bustness and ability to generalize. Ground truth annotations produced by single
raters are one of the major limitations of any training data. Models should ide-
ally be trained on consensus agreement annotations from multiple experts, but
unfeasible in practice from the time and effort required for annotating 3D MRI
scans. Example predictions from PW AGU tumor, annotations and Dice scores
are shown in Figure 3, illustrating the challenges with small and fragmented
lesions as well as the discrepancy in the human raters annotations.

Fig. 2. Linear regression plots of predicted volume vs (1) GT (2) consensus agreement,
and (3) union of annotations. The plots are shown with log-axis for visibility.

4 Conclusions

In this study, experiments on sampling strategies and architecture designs to
increase segmentation and classification performance for early post-operative
glioblastoma segmentation were presented. Improving segmentation performance
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and patient-wise sensitivity was shown to be challenging without compromising
on the specificity and classification performance. Part of the explanation can
be linked to the quality and robustness of the manual annotations. The level of
difficulty for the task requires experienced raters, but inter-rater variability was
highlighted as an ensemble of clinical expert raters disagrees on the segmentation
of the residual tumor. In spite of these challenges, our model shows robustness
and high agreement with the ensemble of clinical expert raters. The automatic
method for early post-operative segmentation could therefore be a time-saving
and accurate alternative to the current standard manual method for measuring
residual tumor volume after surgery of glioblastoma.

Disclosure of Interests. The authors have no competing interests to declare.
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