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Abstract. The analytical projector (system matrix) used in most PET
reconstructions does not incorporate Compton scattering and other im-
portant physical effects that affect the process generating the PET data,
which can lead to biases. In our work, we define the projector from the
generative model of a Monte-Carlo simulator, which already encompasses
many of these effects. Based on the simulator’s implicit distribution, we
propose to learn a continuous analytic surrogate for the projector by us-
ing a neural density estimator. This avoids the discretization bottleneck
associated with direct Monte-Carlo estimation of the PET system ma-
trix, which leads to very high simulation cost. We compare our method
with reconstructions using the classical projector, in which corrective
terms are factored into a geometrically derived system matrix. Our ex-
periments were carried out in the 2D setting, which enables smaller-scale
testing.

Keywords: PET reconstruction · Simulation-Based Inference (SBI) ·
Scatter correction · Conditional Density Estimation · Neural networks.

1 Introduction

Positron emission tomography (PET), whose aim is to map metabolic activity
inside the patient via the administration of a radioactive tracer, is a standard
imaging technique in oncology for diagnosis and therapy. The inverse problem
of PET reconstruction involves obtaining an image of the spatial distribution of
the radiotracer from the detections in coincidence of pairs of gamma photons.

Due to the complex nature of the physical phenomena that affect the emis-
sion, transport and detection of γ-photons,many biases impact the direct line-
integral (Radon) model used to define the analytical projector in most iterative
reconstruction algorithms. Notably, because of the low energy resolution of de-
tectors, coincidences due to photons scattered inside the body may represent
up to half of the total detected events. In model-based iterative reconstruction,
ad hoc corrective terms must therefore be analytically estimated and factored
into the PET system matrix to account for these effects. However these methods
developed over time are complex and can be prone to specification errors.

In contrast, multiple simulators based on particle transport provide realistic
generative models of a PET scan, to the extent that they are commonly used



2 Bastien Bergere, Thomas Dautremer, and Claude Comtat

in nuclear medicine as a reference. In our work we define the projector from the
generative model of one of these Monte Carlo simulator [2], which incorporates
realistic physical effects (mainly Compton scattering and positron physics).

A number of works [13, 17] that can be found in the extensive review [5]
have already studied the feasibility and benefits of using a Monte-Carlo projec-
tor, since performance of iterative reconstructions depends on how faithfully the
model describes the real PET process. However, all these studies have in com-
mon some direct Monte-Carlo estimation of the PET matrix, in which a fixed
number of observations are simulated for each point source [7]. Due to the high
resolution of modern PET scanners this leads inevitably to computation and
memory shortage, as the system matrix can have up to 1012 elements.

In our proposal we instead consider a continuous Monte-Carlo projector, by-
passing the bottleneck in the simulation phase due to discretization. The draw-
back is that the simulator’s distribution is implicit and does not provide a trac-
table representation of the projector, which is needed to compute the likelihood.

As in the general case where there is no likelihood, the main way to proceed
is to use density estimation techniques [1] to construct a tractable surrogate.
Our work is in line with this general idea, called simulation-based inference [3]
(SBI), which has been growing due to the advent of high-fidelity simulators as
well as the development of powerful neural density estimators [8]. Our proposal is
to use the linearity in the Poisson model, so that learning a likelihood surrogate
for PET imaging can be reduced to approximating the conditional distribution of
the continuous projector. Due to the multimodal and low-dimensional nature of
this law, we favour a neural density estimator in the form of a Gaussian mixture.

The principal objective of this article is to establish a proof of concept for
the SBI approach in two-dimensional PET.

2 Continuous Surrogate Projector

For each positron emission occurring at s=(x, y), the simulator generates the
trajectory of the annihilation photons and outputs their angular position on the
detectors ring θ=(θ1, θ2). Let psim denote the conditional density3 of (θ1, θ2)
given an emission point (x, y). Its discrete analogue is the PET matrix described
by the conditional probabilities aij of detection in a line of response (LoR) i
given a emission in pixel j. Conditionally on an emission map λ(x, y), simulated
observations follow a spatial Poisson process with intensity Λ over [0, 2π]2, where

Λ(θ1, θ2) =

∫
psim(θ1, θ2 | x, y)λ(x, y)dxdy (1)

Given the number of latent variables involved in generating photons trajectories
within the simulator, the implicit density psim is intractable, as is the Poisson
likelihood. Nevertheless, thanks to linearity in λ in (1), it is sufficient to approx-
imate the 2D conditional distribution psim to then obtain a likelihood surrogate.

3 By design, psim is symmetric under exchange of variables θ1, θ2
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Fig. 1. Left : the new observations parameters (θ1, θ3) are computed conditionally
to the emitting pixel sj = (xj , yj). The angle θ3 is the difference (centered in π)
between θ2 and the virtual angle θv(θ1, sj). Right : At pixel sj = (−4, 2), the conditional
distribution of (θ1, θ3) is sampled from the neural surrogate (orange) and the simulator
(blue) for both scattered coincidences (below) and unscattered (above, different scale).

2.1 Conditional Density Estimation

Combining our prior knowledge about the multimodal structure of data with
the learning capacity of neural nets, we choose to model the data with Mixture
Density Networks (MDN) [1]. The MDN is constructed with two elements :
i) a conditional distribution written as a mixture of M Gaussian components4,
where parameter M controls the model’s expressivity :

q(θ | s) =
M∑

m=1

πm(s)×N
(
θ | µm(s), Σm(s)

)
(2)

ii) a single neural net (MLP) with weights w, that takes as an input the variable
s = (x, y), and outputs all parameters πm(s;w) and µm(s;w), Σm(s;w) describ-
ing the mixture.

Choosing the best density estimator then becomes an optimization problem
on w, with the conditional likelihood (2) over the train set as the objective.

Finally, we define a new set of angles (θ1, θ3) parameterizing the indepen-
dent observations, as shown in Figure 1. This representation, which is problem-
specific, allows us to distinguish and learn separately (with two distinct MDN)
the unscattered (q1) and scattered (q2) components of psim. For the first com-
ponent, due to the small variance of θ3, we decompose q1(θ1, θ3 |s) := q̄1(θ1|s)×
qGG(θ3|θ1, s), where q̄1 is a MDN in 1D and qGG is another density network with

4 can be generalized to any choice of law
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a single generalized Gaussian component. A classifier h is also trained with a
neural net to predict the observation labels ci associated with each component
(cf. section 3). Conditionally to the weights w = [w1,w2,w3,w4] of q̄1, q2, qGG

and h, the continuous surrogate is finally described by the following formula5 :

p̂(θ1, θ3 |s) = h(1 |s)q1(θ1, θ3 |s) + h(2 |s)q2(θ1, θ3 |s) (3)

3 Stochastic Simulator

To generate PET data, we use the Phoebe software [2], developed at CEA List
from Penelope [14], which enables Monte-Carlo simulation of photon and elec-
tron/positron transport. The main interactions photons undergo are the photo-
electric effect (absorption) and Compton inelastic scattering. To reduce simula-
tion time, the distributions of the positron path range6 and annihilation acolin-
earlity are precomputed using Phoebe and sampled for each emission.

From the Phoebe code, which is in 3D, we generate 2D particle trajectories by
conditioning the photons to remain in the plane during annihilation and later
during Compton interactions. Time-dependent effects that introduce bias and
non-linearities, such as radiotracer kinetics and detector dead time, as well as
random coincidences, are not taken into account. Detector physics is not taken
into account either, with the exception of a Gaussian blur to the energy values
(20 % energy resolution). A low-energy threshold of 420 keV is then applied,
leading to a scatter fraction of around 35-40 %.

Given an emission map λ, emission points are sampled in the simulator ac-
cording to a Poisson process.The energy values (e1, e2) of the two photons when
entering the detectors are used to label the observations : if e1 = e2 = 511 keV,
they are labeled as unscattered (c = 1), otherwise as scattered (c = 2). Simu-
lated events that do not result in a coincidence (at least one of the photons is
not detected) are recovered and are labeled accordingly (c = 3) .

4 Experiments Setup

Attenuation map : Volumes of the materials in the Field of View (FOV)
are described in Phoebe by quadratic surfaces. In our experiments, we chose a
head-like scene with an outer ring of bone and water inside (cf. Figure 2).

Training data : For k = 1, ..., Nunif = 3× 106, list-mode data (xk, yk, θ
k
1 , θ

k
3 )

along with the corresponding labels ck are generated by the simulator using an
uniform emission map over the FOV (simulation time t ≈ 5 min). The data are
then splitted into train and validation sub-samples. Given the grid that will be
used for reconstruction (see section 4.1), the (xk, yk) values are then replaced by
the coordinates of the pixel containing them, enabling the networks to learn the
conditional density of (θ1, θ3) given the emission pixel.

5 conditional on the event being detected (h ̸= 3). The sensitivity at s is equal to the
probability h(1|s) + h(2|s) = 1 - h(3|s)

6 using the positron emission energy spectrum of fluor F18.
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Networks training : The four neural networks describing q̄1, q2, qGG and h are
trained over our training sample (for q2 only on the scattered data and for q̄1, qGG

only on the unscattered). Each of them is defined with four 256-width hidden
layers, which theoretically allow to approximate any function of interest [9]. The
Adam optimizer is used for gradient descent in order to minimize the negative
log-likelihood or the categorical cross-entropy in the specific case of the classifier.
Tunable hyperparameters include the activation functions, the Adam learning
rate and the batch size. They are adjusted using the validation set. In contrast
the number M of components of the MDN is fixed and set to 20. The training is
implemented using the deep-learning Python library TensorFlow. Computations
were done on our hardware comprised of a single Nvdia RTX 3080 GPU kernel
and AMD Ryzen 64-cores CPU (total training time t ≈ 15 min).

4.1 Reconstruction settings

As in most cases in PET, the image λ is reconstructed on a finite basis of pixels,
in our case of total dimension J=200×200. To evaluate our proposal, we use an
image of a brain obtained by MRI, to which a tumor has been added (cf. Figure
2) to generate a realistic fluorodeoxyglucose [18F]FDG PET phantom. With the
attenuation map shown in Figure 2, which in practice must be obtained by a joint
CT scan, this ”true image” λ∗ ∈ RJ is then used in Phoebe to generate a total
number of N1 = 106 unscattered-equivalent7 observations (θk1 , θ

k
2 )1≤k≤N . By

dividing the outside ring uniformly we also define nD = 500 ”virtual” detectors
(cf. Figure 1), which leads to a total number I = 4.4×104 of valid detectors
pairs (LoR) : (Ii1, I

i
2)1≤i≤I . An histogram Y ∈ RI is then obtained after binning

the continuous observations (θ1, θ2) over the intervals (Ii1, I
i
2). The histogram is

subsequently transformed into a sinogram.

4.2 Projector binning (system matrix)

Since observations are sampled from a Poisson process with intensity Λ, count
data over the disjoint sets of LoR Li = (Ii1×Ii2) ⊔ (Ii2×Ii1) have the following
distribution :

Y ∼
I⊗

i=1

Poisson(Λi) , Λi =

∫∫
Li

Λ(θ1, θ2)dθ1dθ2 (4)

Defining aij =
∫∫

Li
psim

(
θ1, θ2 | sj

)
dθ1dθ2 and remembering the definition of Λ

in (1), we then have Λi ≈
∑

j λjaij . The mean value of the count data Λ ∈ RI

is thus described by the linear system Λ = Aλ, where A = (aij) ∈ RI×J

corresponds to the PET matrix. In our work, coefficients (aij) are estimated on

7 The total number of observations needed to get the mentioned number if we remove
all the less-informative scattered observations.
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the fly at each iteration by integrating the continuous surrogate in the 2D data
space [0, 2π]× [0, 2π] :

aij ≈
∫∫
Li

p̂
(
θ1, θ3 | sj ; ŵ

)
× 1 dθ1dθ2 (5)

where sj is the coordinates of pixel j and θ3 is a function8 of θ1, θ2, sj (cf. Fig. 1).
Here ŵ denotes our solution to the optimization problem (cf. section 2.1). For
the scattered component, the surrogate q2 in equation (3) is deemed sufficiently
regular and a only one value is used to approximate (5). Whereas for unscattered
counts, the integral over dθ1 is estimated by importance sampling by directly
calling the generative model q̄1(·|sj).

For comparison, we will also use the factorized matrixA = HdatAattAgeoHimg

associated to the analytical projector commonly used in PET reconstruction [12].
The diagonal matrix Aatt is obtained from the attenuation map and the sparse
matrix Ageo , which corresponds to the discretized Radon transform is efficiently
computed using Siddon’s algorithm [16]. Finally, the matrix Himg (resp. Hdat)
corresponds to a 2D convolution in the image (resp. histogram data) space.

4.3 Iterative reconstruction (EM)

The image is reconstructed by maximizing the concave Poisson log-likelihood

L(λ)
c
=

∑
i

(
yi log(a

T
i·λ)− aTi·λ

)
(6)

To do that, we use the deterministic (start from a constant image) EM algo-
rithm [6], which is the reference method for PET statistical reconstruction [11].

Since the inverse problem is ill-posed, it is necessary to regularize the EM es-
timates. The first method used is early Stopping with Gaussian post-smoothing9.
Regularization is also achieved by adding to the log-likelihood objective a prior
term that penalizes non-smooth images. Using a Gibbs Field prior with the Fair
potential function [18], we maximize the new objective using the iterative MAP-
EM algorithm of De Pierro [10, 18].

Unlike our surrogate model, scatter is not taken into account in the analyt-
ical projector and must therefore be corrected. From a rough estimate λ̃, the
number bi of scattered counts in each LoR i is estimated beforehand10, and then
the Poisson model’s mean value of counts in each LoR i is changed to aTi·λ+ bi .

4.4 Evaluation methodology

All figures of merits are computed and averaged over N = 20 replicates, each
obtained with an independent set of simulated observations. In addition to Mean

8 the Jacobian resulting from this change of variable is equal to 1
9 We choose a FWHM value of 2mm

10 The λ̃ estimate is obtained with the analytical model and using all counts, and from
there b is estimated by simulation (can also be done analytically).
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Square Error (MSE), we compute the relative bias (B) and the relative standard
deviation (σ) values, which are defined as follows

B =

∑
j∈R

(
λ̄N
j − λ∗

j

)∑
j∈R λ∗

j

σ2 =
1
N

∑N
n=1

∑
j∈R(λ

(n)
j − λ̄N

j )2∑
j∈R(λ

∗
j )

2
(7)

with λ̄N
j = 1

N

∑N
n=1 λ

(n)
j denoting the mean reconstruction at pixel j. These rel-

ative values are computed for for two regions (R) of the brain : grey matter11 and
lesion (tumor) and are plotted in Fig.3 for different choice of hyperparameters.

5 Results and Discussion

Fig. 2. Reconstructions are displayed in the center and rightmost columns, with those
obtained using the SBI (resp. factorized) matrix in the first (resp. second) row. Left-
most column : Ground Truth (top) vs Attenuation at 511 keV (down). Center-left :
EM reconstruction (one replica). Center-right : MAPEM reconstruction (one replica).
Rightmost column : mean EM reconstruction (10 replicates).

Figure 2 compares PET images reconstructions obtained with N1 = 106

counts. The images are obtained using the EM and MAPEM algorithms, each
with the two different discretized projectors : the simulation-based projector
(SBI) versus the analytical projector (factorized matrix). The values of the reg-
ularization parameters used are t = 80 for EM early stopping and β = 0.005 for
the weight of the Gibbs prior (they corresponds to the larger marks in Fig.3).
They are chosen to minimize the MSE, which averages to 2.45 × 104 with the
SBI matrix and 2.50×104 with the factorized matrix using EM algorithm (resp.
2.29×104 with SBI matrix and 2.48×104 with factorized matrix using MAPEM).

11 the grey matter region includes the entire green colored level in the ground truth
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We observe similar bias values for both projectors, but noisier reconstructions
with the geometrical one. This result can be partly explained by the fact that
the detector response weights (rows of the PET matrix) are more sparse in the
geometric model than in the SBI model, which simulates a number of degrading
physical effects including scattering. These intuitions are confirmed by the more
detailed bias - standard deviations plots presented in Figure 3. For a given bias
value (these are negative largely due to partial volume effects), we observe that
reconstructions with SBI systematically have a lower standard deviation.
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Fig. 3. Bias-Standard deviation plots computed across 20 replicates. Plotted points
correspond to different regularization hyperparameters (ranging from t = 40 to t = 120
for EM and β=5 × 10−5 to β=10−3 for MAPEM).

5.1 Discussion

Our goal is to propose a new conceptual approach that allows to efficiently
incorporate a realistic generative model of the PET process into an iterative
model-based reconstruction (cf. Supplementary Material). As in the case of re-
construction with accurate resolution modeling, we observe less pixel variance
using our simulation-based projector (a slower convergence is also observed).
Using a different simulator such as GATE [15] to generate test data should be
the main way to attest the validity of our proposal.

The advantage of the SBI approach is that it is much easier to add complex
physical effects (such as annihilation non-collinearity) to the simulator’s gener-
ative model than to an explicit analytical model. These effects can be added
naturally into the simulator by defining and drawing latent variables. They are
then automatically integrated into the surrogate model during the supervised
learning phase as the estimator implicitly marginalizes over all latent variables.
As many software packages [4, 15] already offer accurate stochastic simulation of
the PET process (including crystal detection), this is a promising field of study.
Clinical feasibility ultimately depends on the scalability of our method to 3D,
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which seems achievable without major changes. Indeed, learning a continuous
model remains a density estimation problem in low-dimensional spaces (only
three coordinates are needed to define an emission source and four for a line of
response). In terms of computational resources, the main limitations are likely
to be related to the discretization of the continuous model during reconstruc-
tion. Another important question concerns the management of the possible bias
introduced by the simulator and the regression.
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