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Abstract. In addressing the unique challenges of medical image seg-
mentation, foundation models like the Segment Anything Model (SAM),
originally developed for natural image, often falter due to the distinct
nature of medical images. This study introduces the Language Guide
Adapter (LGA), a paremeter efficient fine-tuning approach that extends
SAM’s utility to medical segmentation tasks. Through the integration
of textual data from medical reports via a pretrained Bert model into
embeddings, LGA combines these embeddings with the image features in
SAM’s image encoder using Feature Fusion Modules (FFM). Our method
significantly enhances model performance and reduces computational
overhead by freezing most parameters during the fine-tuning process.
Evaluated on the CT-based MosMedData+ and the X-ray dataset QaTa-
COV19, LGA demonstrates its effectiveness and adaptability, achieving
competitive results with a significant reduction in the number of param-
eters required for fine-tuning compared to SOTA medical segmentation
models. This enhancement underscores the potential of foundation mod-
els, leveraging the integration of multimodal knowledge as a pivotal ap-
proach for application in specialized medical tasks, thus charting a course
towards more precise and adaptable diagnostic methodologies. The code
is avaliable at https://github.com/JiHooooo/LGA.

Keywords: Medical image segmentation · Foundation model · Vision-
language model · Parameter efficient fine-tune.

1 Introduction

The segmentation of medical images represents a pivotal task in computer-
assisted diagnosis. In recent years, deep learning models have achieved notable
success in this field, enabling fully automated segmentation of objects of interest[22,15,4,27].

https://github.com/JiHooooo/LGA
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Nonetheless, these models are heavily dependent on large, annotated datasets
for training—a requirement that presents substantial challenges in the medical
field. The need for expert annotations from professional doctor renders the data
preparation phase both time-consuming and expensive. Additionally, the diver-
sity of medical imaging modalities, along with variations in imaging equipment
and operational methods across different hospitals, significantly challenges the
generalizability of these models.

Transitioning from these traditional approaches, the recent advent of foun-
dation models marks a paradigm shift towards overcoming such limitations. Ini-
tially excelling in Natural Language Processing (NLP), models like GPT[20] and
BERT[8] have showcased their prowess in text understanding and generation. By
leveraging zero-shot learning and prompt engineering, these foundation models
perform well across various tasks with minimal data, demonstrating their adapt-
ability and efficiency without extensive training. In the field of image segmen-
tation, SAM[16] emerges as the pioneering foundation model. Equipped with an
expansive dataset of 11 million labeled images and an interactive segmentation
framework, SAM achieves remarkable zero-shot capabilities on natural images.
However, studies[14,10] have indicated SAM’s underperformance in the medical
imaging domain, highlighting the need for further improvement to bridge the
applicability gap.

Given the substantial parameter volume inherent in foundation models, com-
prehensively fine-tuning such models requires extensive computational resources,
and when attempted with limited datasets, often results in suboptimal perfor-
mance. Consequently, there’s a growing focus on parameter-efficient fine-tuning
strategies. For instance, MedSAM[19] adopts a strategy where it freezes the
parameter-heavy image encoder within SAM, opting to fine-tune only the mask
decoder using medical data. Meanwhile, [24,12,5] leverage Adapter technology,
inserting lightweight, learnable modules into the existing model for fine-tuning
the image encoder. Techniques like Low-Rank Adaptation (LoRA) are also used
to adjust the encoder [25,26]. However, these methodologies remain primarily
confined to the imaging modality.

Contrasting with the limitations inherent to the imaging modality alone,
leveraging the intrinsic value of medical reports presents a unique opportunity in
medical image analysis. Since each patient’s medical imaging is accompanied by
a corresponding medical report, acquiring these reports incurs no additional cost,
unlike the augmentation of segmentation annotations. Furthermore, the imaging
quality of medical images is generally lower than that of natural images, with
boundaries between different regions appearing more blurred. However, medical
reports, enriched with expert knowledge, compensate for the deficiencies in image
quality. [13] developes an attention-based framework for learning both global
and local representations by contrasting image sub-regions with words in the
paired report. [23] improves polyp segmentation by incorporating text-guided
features like polyp size and count. [17] leverages Bert to extract textual features
of medical reports and employs a hybrid network of CNNs and Transformers to
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fuse textual and visual features. These methods still require designing complex
networks from scratch to fuse textual and image information.

In contrast, we propose a more flexible multimodal model framework that
retains the parameters of foundation models like SAM and BERT used in our ex-
periments. Our approach uses lightweight feature interaction modules for feature
fusion. For each new task, only these modules and the task-specific prediction
head need fine-tuning. This method enhances model performance while reducing
computational and storage resources. Our contributions are summarized in three
key areas:
1. We introduce a parameter-efficient fine-tuning method for SAM foundational

models, called language guide adapter(LGA), which incorporates textual in-
formation into the fine-tuning process, significantly enhancing the model’s
performance on specific medical segmentation tasks. To the best of our
knowledge, this is the first study to implement adapter technology for incor-
porating textual information into SAM foundation model.

2. We have developed an efficient feature fusion module(FFM) that combines
cross-attention mechanisms with Multi Layer Perceptron(MLP) networks to
achieve the integration of textual and visual information.

3. Through comprehensive experiments on the X-ray QaTa-COV19 and CT
MosMedData+ datasets, our study showcases it’s exceptional adaptability
across various medical imaging modalities. It not only surpasses SOTA al-
gorithms in terms of performance but also achieves this with a significantly
reduced number of training parameters.

2 Methodology

The SAM model comprises three primary components: an image encoder with a
vision transformer architecture for feature extraction[9] , a prompt encoder for
encoding prompt information, and a mask decoder for generating final predic-
tions using both prompt and image features. The majority of the SAM model’s
parameters are concentrated in the image encoder. As illustrated in 1, we remove
the prompt encoder, tailoring the model for automated end-to-end segmentation
tasks. Textual features are extracted from medical reports using the pretrained
Bert model and then combined with image features via the LGA, which inte-
grates multiple FFMs. Moreover, during the fine-tuning phase, we specifically
adjust only the parameters of the LGA and the mask decoder. By freezing the
entire image encoder, we significantly reduce the number of parameters that
need fine-tuning.

2.1 LGA framework

The LGA comprises N FFMs. For each module, designated as Fn
FFM for the n-th

module, a textual feature Ln and an image feature Vm are inputted, yielding an
updated textual feature L̂n and image feature V̂m, (L̂n, V̂m) = Fn

FFM (Ln, Vm).
Here, Vm represents the feature output from the m-th transformer block within
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Fig. 1. LGA Framework Overview: Extracting image features via image encoder and
text features via Bert, with LGA fusing both for prediction by the mask decoder.
During fine-tuning, only LGA and mask decoder are adjusted, freezing Bert and image
encoder.

the image encoder, and V̂m is subsequently fed back into the image encoder
for further processing. The updated textual feature L̂n is then utilized as the
input for F

(n+1)
FFM , facilitating continuous feature fusion across the sequence of

FFMs. Notably, the Bert model initially processes the medical reports into a
summarized feature L0 by converting and averaging word features, as detailed
in Eq.1. Z and F represent the length of the medical report T and the length of
Bert feature respectively.

Ln =

{∑Z
j=1 Bert(T ) ∈ R1×F , n = 0

L̂n−1, n > 0
(1)

2.2 FFM structure

Fig. 2. The structure of feature fusion module.

The FFM, depicted in Fig.2,
stands as a crucial compo-
nent within the LGA frame-
work. It employs a dual cross-
attention structure integrated
with two MLPs to facilitate
the fusion process. The entire
computation process is illus-
trated in Eq.2, Eq.3, Eq.4 and
Eq.5, with norm(·) denoting
Layer Normalization[2]. The
learnable parameter γn is ini-
tially configured to 0. This setup aims to maintain the pre-trained image en-
coder’s feature extraction integrity in the training’s early stages[6].

L′
n = Ln + CrossAtten(norm(Ln), norm(Vm)) (2)

L̂n = L′
n +MLPtext(norm(L′

n)) (3)
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V ′
m = Vm + γnCrossAtten(norm(Vm), norm(L̂n)) (4)

V̂m = V ′
m +MLPvit(norm(V ′

m)) (5)

2.3 Training process

For fine-tuning, we use a dataset {(Xd, Y d, T d)}Dd=1 comprising images Xd, la-
bels Y d, and related medical reports T d, with D samples in total. The Bert model
transforms medical reports into text feature Ld

0. Then, the image encoder, in-
tegrating the LGA, extracts features from inputs Xd and Ld

0, which are then
processed by the Mask decoder to yield the segmentation predictions P d. We
calculate loss using a mix of Dice and cross-entropy loss, detailed in Eq.6 and
Eq.7, where K and C are pixel and class counts. Pkc is the probability of pixel
k in class c, and Ykc represents whether pixel k belongs to category c. The total
loss formula is ltotal = 0.5lDice + 0.5lCE .

lDice = 1−
K∑

k=1

C∑
c=1

1

KC

2 |Pkc ∩ Ykc|
(|Pkc|+ |Ykc|)

(6)

lCE = −
K∑

k=1

C∑
c=1

1

K
· Ykclog(Pkc) (7)

3 Experiments

3.1 Datasets

We evaluated our model using two datasets: MosMedData+[1,11] and QaTa-
COV19[7]. MosMedData+ consists of 2729 lung CT slices with COVID-19 find-
ings, annotated with binary masks highlighting regions such as ground-glass
opacifications. The QaTa-COV19 dataset contains 9258 chest X-rays annotated
for COVID-19 lesions. Text annotations detailing aspects like infection pres-
ence, number of affected regions, and their specific locations (e.g., "Bilateral
pulmonary infection, two infected areas, upper left lung and upper right lung")
were added by [17]. For dataset partitioning, both MosMedData+ and QaTa-
COV19 datasets were divided into training, validation, and test sets with 2,183,
273, 273, and 5,716, 1,429, 2,113 samples respectively, aligning with [17].

3.2 Implementations

In terms of data augmentation, we employed random cropping, rotation, trans-
lation, scaling, and adjustments to brightness and contrast. The specific parame-
ters are detailed in the appendix. For model training, the batch size was set to 2,
with AdamW[18] as the optimizer. The initial learning rate was set to 1e-4, with
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a weight decay of 0.001. Regarding learning rate adjustment, we applied a linear
warm-up for the first 1,000 iterations, followed by a cosine decay of the learning
rate thereafter. Training was conducted over 50 epochs, utilizing a single RTX
4090 graphics card.

In our model structure, we utilized the ViT-B architecture, initializing it with
pretrained SAM parameters from the SA-1B dataset[16]. The LGA includes four
FFMs: the first three interact with the input features of the 1st, 5th, and 9th
transformer blocks of ViT-B, respectively, while the final FFM engages with the
output features of ViT-B’s last transformer block. Within this last FFM, we
omitted the cross-attention mechanism and the MLP, both initially intended to
enhance text features. The detailed parameters for the FFMs are provided in
the appendix.

3.3 Quantitative results

Table 1. Quantitative comparison of our proposed method with other SOTA medical
image segmentation results

Method Text Param(M) QaTa-COV19 MosMedData+

Dice(%) mIoU(%) Dice(%) mIoU(%)

U-Net[22] % 14.8 79.02 69.46 64.60 50.73

UNet++[27] % 74.5 79.62 70.25 71.75 58.39

nnUNet[15] % 19.1 80.42 70.81 72.59 60.36

TransUNet[4] % 105 78.63 69.13 71.24 58.44

Swin-Unet[3] % 82.3 78.07 68.34 63.29 50.19

MedSAM[5] % 4.06 73.05 61.97 50.91 37.13

TGANet[23] ! 19.8 79.72 70.58 72.06 59.73

CLIP[21] ! 87.0 79.81 70.66 71.97 59.64

GLoRIA[13] ! 45.6 79.94 70.68 72.42 60.18

LViT-T[17] ! 29.7 83.66 75.11 74.57 61.33

LGA(our) ! 8.24 84.65 76.23 75.63 62.52

In our quantitative analysis, the LGA model was evaluated against SOTA
medical segmentation models using Dice and mIoU metrics. This comparison
spanned text-integrated models (TGANet, CLIP, GLoRIA, LViT-T), image-
only models (UNet, UNet++, nnUNet, TransUNet, Swin-Unet), and MedSAM,
which fine-tunes only the SAM mask decoder. Results, shown in Table.1, indi-
cate LGA’s superior performance and efficiency: it achieved the highest scores
in both metrics on all datasets and required significantly fewer training pa-
rameters than all models except MedSAM. Specifically, LGA improved Dice and
mIoU on QaTa-COV19 by 11.60% and 14.26%, and on MosMedData+ by 24.72%
and 25.39%, respectively, compared to MedSAM. Against the most competitive
model, LViT-T, LGA recorded improvements of 0.99% in Dice and 1.12% in
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mIoU on QaTa-COV19, and 1.06% in Dice and 1.19% in mIoU on MosMed-
Data+, with a 72.3% reduction in fine-tuned parameters.

3.4 Model results visualization

We also visualized the model’s results, as shown in Fig. 3. From left to right, the
sequence is textual information, original image, label, and the results from the
LGA, MedSAM, LViT, and nnUNet models. It is evident that, due to the lack of
textual information, nnUNet and MedSAM are prone to inaccuracies in deter-
mining the position and number of infected regions. Compared to LViT, which
also integrates textual information, the segmentation results of our proposed
LGA are more precise.

Fig. 3. Qualitative comparison of our proposed LGA with MedSAM, LViT and nnUNet

3.5 Ablation study

In the ablation study performed on the QaTa-COV19 dataset, our baseline in-
volved solely fine-tuning the mask decoder. We first assessed the performance
impact of integrating the LGA fusion module and textual information. Following
this, we investigated the influence of both the structure and number of FFMs
within the LGA on the model’s effectiveness.

In Table.2, we progressively enhance the baseline by first adding textual
information (following the original SAM’s approach of directly inputting Bert-
converted text into the Mask decoder), then by solely introducing the LGA
without text (replacing BERT’s text features with learnable query), and finally
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by fully implementing the LGA strategy. Detailed test conditions are in the ap-
pendix. The results show that both LGA’s improvement of the Image Encoder’s
feature extraction and the addition of textual information positively affect per-
formance, with the combination of both achieving the best outcomes.

For analysing the FFM structure’s impact, we sequentially added Dual cross
attention and separate MLPs for image and text features on top of the baseline.
We found that each component contributes to the final performance, as shown
in Table.3.

Table 2. The ablation study on the
QaTa-COV19 Dataset

LGA Text Param(M) Dice(%) mIoU(%)

4.06 73.05 61.97
! 4.20 78.62 68.10

! 8.24 80.37 70.83
! ! 8.24 84.65 76.23

Table 3. The influence of FFM structure
on the QaTa-COV19 Dataset

Dual ViT Text Param Dice mIoU
Cross MLP MLP (M) (%) (%)

4.06 73.05 61.97
! 6.15 81.65 72.01
! ! 7.34 84.09 75.47
! ! ! 8.24 84.65 76.23

Table 4. The influence of FFM number on the QaTa-COV19 Dataset

Number Param(M) Dice(%) mIoU(%)

0 4.06 73.05 61.97
1 4.66 81.21 71.51
2 5.85 84.23 75.47
3 7.04 84.43 75.85
4 8.24 84.65 76.23
5 9.43 84.68 76.08

In Table.4, we assessed how varying the number of FFMs in the LGA af-
fects performance with FFM placement specifics in the appendix. Compared to
the baseline that only adjusts the mask decoder, integrating one FFM into the
image encoder substantially enhanced performance, raising Dice by 8.16% and
mIoU by 9.54%, with a minimal parameter increase of 0.60M. Additional FFMs
further improved results, but the benefit plateaued after four FFMs, suggesting
a saturation point. Thus, for efficiency, subsequent experiments used four FFMs.

4 Conclusion

In this paper, addressing the performance degradation of SAM foundation mod-
els in medical segmentation tasks, we introduce a parameter-efficient fine-tuning
strategy named LGA, which boosts model performance by incorporating textual
information. This approach also serves as an efficient paradigm for integrat-
ing textual and visual modalities, utilizing adapter technology to fuse features
from both vision and language foundation models for specific tasks. We vali-
dated our method on two medical imaging datasets from different modalities:
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the CT dataset MosMedData+ and the X-ray dataset QaTa-COV19, demon-
strating its applicability across diverse medical imaging data types. Compared
to other SOTA medical segmentation models that focus solely on the image
modality or combine image and textual modalities, our LGA method not only
achieves SOTA performance but also significantly reduces the amount of param-
eters required for fine-tuning. However, our current approach relies on textual
input during inference, which can be a limitation when such information is not
available. We plan to address this issue in future work.
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