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Abstract. Histopathological samples are typically processed by forma-
lin fixation and paraffin embedding (FFPE) for long-term preservation.
To visualize the blurry structures of cells and tissue in FFPE slides,
hematoxylin and eosin (HE) staining is commonly utilized, a process that
involves sophisticated laboratory facilities and complicated procedures.
Recently, virtual staining realized by generative models has been widely
utilized. The blurry cell structure in FFPE slides poses challenges to well-
studied FFPE-to-HE virtual staining. However, most existing researches
overlook this issue. In this paper, we propose a framework for boost-
ing FFPE-to-HE virtual staining with cell semantics from pretrained
cell segmentation models (PCSM) as the well-trained PCSM has learned
effective representation for cell structure, which contains richer cell se-
mantics than that from a generative model. Thus, we learn from PCSM
by utilizing the high-level and low-level semantics of real and virtual
images. Specifically, We propose to utilize PCSM to extract multiple-
scale latent representations from real and virtual images and align them.
Moreover, we introduce the low-level cell location guidance for generative
models, informed by PCSM. We conduct extensive experiments on our
collected dataset. The results demonstrate a significant improvement of
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our method over the existing network qualitatively and quantitatively.
Code is available at https://github.com/huyihuang/FFPE-to-HE.

Keywords: FFPE-to-HE virtual staining · Cell semantics · Generative
adversarial network.

1 Introduction

Histopathological samples are typically available in both unstained and stained
forms. Among unstained forms, formalin fixation and paraffin embedding (FFPE)
is the most common due to the advantage of long-term preservation, while
the structures of cells and tissue in FFPE slides are blurry. Different chemical
dyes are commonly employed to visualize the structures, or to label the specific
molecules, thereby assisting in diagnosis or research. Among them, hematoxylin
and eosin (HE) is recognized as the standard staining method, constituting ap-
proximately 80% of histopathology slides worldwide [1]. Hence, it is obvious that
FFPE-to-HE staining is widely applied in the medical field. However, the chem-
ical staining process from FFPE to HE is typically labor-intensive and requires
specific laboratory facilities [2].

With the rapid development of digital pathology and deep learning technol-
ogy, virtual staining has shown enormous potential as an alternative to chemical
staining [2]. Due to its wide application, FFPE-to-HE virtual staining has at-
tracted the attention of many researchers. For example, Asaf et al., [1] applied
DCLGAN [4] on unstained skin tissue and compared its performance with Cycle-
GAN [14] and CUT [9]; Khan et al. investigated the virtual staining performances
of pix2pix and its variants (double convolution and dense convolution) on pre-
clinical prostate tissue [6]; Koivukoski et al. utilized CycleGAN and prostate
tissue to investigate the influence of section thickness [7]; Randa et al. proposed
a novel loss function based on Pearson’s correlation coefficient (PCC) to reduce
the high-level tiling artifacts in the images generated by pix2pix [11].

It can be concluded that most researchers simply apply the Conditional Gen-
erative Adversarial Networks (cGANs) to achieve FFPE-to-HE virtual staining
on different tissues, while few studies introduce the cell semantics. Additionally,
the blurry cell structure in FFPE slides poses challenges to FFPE-to-HE vir-
tual staining. Hence, the insufficient consideration of cell semantics will likely
result in suboptimal performances of FFPE-to-HE virtual staining. Motivated
by the analysis above, we take the cell semantics as the critical information
for mitigating the challenge of blurry cell structure, thereby leading to superior
outcomes. Specifically, cell semantics includes comprehensible low-level semantic
information such as position, shape, and powerful high-level semantic represen-
tation for downstream tasks like classification and segmentation. However, cell
semantics is typically inaccessible, and usually low-level semantic information
can be obtained even through labor-intensive and time-consuming expert anno-
tation. We notice that there are several well-pretrained cell segmentation models
(PCSM) based on a vast number of medical images [3,12], which can simulta-
neously obtain low-level and high-level semantics. To leverage the powerful cell
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semantics, we propose a framework to boost the challenging virtual staining
tasks like FFPE-to-HE with PCSM. Specifically, we feed the input image into
PCSM to acquire low-level and high-level cell semantics that are provided by cell
segmentation masks and latent representations, respectively. Then, we introduce
the acquired low-level and high-level cell semantics into the cGAN in different
ways. In summary, The main contributions of our work are listed as follows:

(1) The importance of cell semantics for boosting the challenging virtual
staining like FFPE-to-HE is first noticed and investigated.

(2) We propose a framework to simultaneously introduce the low-level se-
mantics and the high-level semantics of cells into the cGAN without expert
annotation.

(3) We demonstrate the significant improvement of our framework on boost-
ing the challenging FFPE-to-HE virtual staining through quantitative and qual-
itative evaluations on an internal test dataset and an external test dataset.

2 Methodology

A typical cGAN is composed of a generator G and a discriminator D. The
overview of our framework to boost virtual staining of the cGAN is shown in
Fig. 1. During training, the real FFPE image (denoted as x) is firstly input into
G to generate a virtual HE image (denoted as ŷ). Both ŷ and the aligned real HE
image (denoted as y) are sent to PCSM to acquire their high-level semantics and
the alignment between them is conducted. Additionally, the low-level semantic
(denoted as m) of the real HE image is obtained from the output of PCSM and
serves as the guidance to D. The details of high-level semantic alignment and
low-level semantic guidance are elaborated below.

2.1 High-level Semantic Alignment

PCSM is typically based on an encoder-decoder architecture [3,12], which forms
the basis of the following description. It is believed that the intermediate features
of the multiple encoder blocks in PCSM contain high-level semantics about cells.
To align the high-level semantics of the real and the virtual images, we design a
CSLoss based on the intermediate features. We denote the i-th feature extractor
as ECi (from input to the i-th encoder block of PCSM). The corresponding i-th
intermediate feature loss lics is then:

lics = ||ECi(y)− ECi(ŷ))||1 (1)

The CSLoss LCS is then:

LCS =

N∑
i=1

wi
csl

i
cs (2)

where N is the total number of the pretrained CS model’s encoder blocks, wi
cs

is the weight corresponding to lics.
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Fig. 1. Overview of the proposed framework to boost virtual staining of the cGAN.

2.2 Low-level Semantic Guidance

The GAN loss of typical cGANs like pix2pix and pix2pixHD is given by

E(x,y)[logD(x, y)] + Ex[log(1−D(x, ŷ))] (3)

where x is the semantic label map and y is the input image [5,13]. It is worth
noting that the input to D is a channel-wise concatenation of x and y, denoted as
cat(x, y). That means it would be the channel-wise concatenation of a real FFPE
image and a corresponding HE image when it comes to FFPE-to-HE virtual
staining. This situation leads us to formulate a hypothesis that the blurry cell
structure in the FFPE image may misguide D to determine the authenticity of
the HE image.

The simplest way to tackle this potential issue is to remove the blurry FFPE
image from the input to D, denoted as cat(���FFPE,HE), which has been proved
effective in our experiment (see Table 1). Differently, our method is replacing
the misguidance of the FFPE image with the guidance of low-level semantics
from y as part of the input to D (see Fig. 1), hoping to guide D to recognize the
difference between the virtual and real images. We name the low-level semantics
as CSMask to simplify the description. In this case, the GAN loss of our method
LGAN(G,D) is given by

LGAN(G,D) = E(x,y)[logD(m, y)] + Ex[log(1−D(m, ŷ))] (4)

2.3 Objective Function

To establish an overall objective function that integrates CSLoss and CSMask,
we employ CellPose [12] as the CS model and pix2pixHD [13] as the cGAN for
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FFPE-to-HE virtual staining in this paper. In this case, Our objective function
G∗ is given by

G∗ = argmin
G

max
D

LGAN(G,D) + λfmLFM + λcsLCS (5)

where LFM is the feature matching loss based on the discriminator [13], λfm and
λcs are employed to adjust the importance of their respective losses. In addi-
tion, the values of wi

cs in LCS are determined based on VGGLoss [13], which
is calculated on five intermediate features in pretrained VGG19. Specially, we
take the first four weights ([ 1

32 ,
1
16 ,

1
8 ,

1
4 ]) in VGGLoss as wi

cs in LCS, consider-
ing that CellPose has only four encoder blocks. It should be emphasized that
these weights may not be optimal for CSLoss. We encourage the community to
contribute to refining them.

3 Experiment

3.1 Datasets

The dataset for the internal train-test is from the Affiliated Cancer Hospital
of Shantou University Medical College in China. We collected 22 pairs of 40x
magnification FFPE-HE whole slide images (WSI) of the axillary lymph node
tissue samples with breast cancer. We first discarded the HE WSIs with unclear
staining or tissue shedding and registered on the remaining pairs of aligned
FFPE-HE WSIs. Then, we checked the registration results and obtained 13 well-
registered pairs of FFPE-HE WSIs. Finally, we obtained 5098 pairs of aligned
FFPE-HE patches with a size of 1152 x 1152 pixels, which were randomly split
into train and internal test datasets with a ratio of 8:2.

Similarly, the dataset for the external test is from Yunnan Cancer Hospital
in China, which contains 1399 pairs of aligned FFPE-HE patches with a size of
1024 x 1024 pixels.

3.2 Implementation Details

We train the cGAN with a combined data augmentation of random cropping
(from 1152 x 1152 to 1024 x 1024 pixels) and random flipping. In particular, the
1075 pairs of internal test data are center-cropped into 1024 x 1024 pixels for
dimensional consistency. The total number of training epochs is set to 100: the
learning rate remains unchanged for the first 50 epochs and gradually decreases
to 0 for the remaining 50 epochs. λcs of CSLoss is equal to λfm. The other
hyper-parameters are consistent with the default pix2pixHD. The experiment is
conducted on GeForce RTX 3080.

3.3 Evaluation Metrics

We use Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), multi-
scale SSIM (MSSSIM), and Pearson’s correlation coefficient (PCC) as the eval-
uation metrics for the quality of the generated image, which are widely used
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in virtual staining research [8,10]. Between a virtual image and a real image,
PSNR measures the peak error; SSIM evaluates similarity based on luminance,
contrast, and structure; MSSSIM extends SSIM by considering multiple scales;
and PCC measures the linear correlation.

3.4 Quantitative Evaluation

Benchmark Results. pix2pixHD is designed with improved objective func-
tion and network of pix2pix for generating high-resolution images. Hence, it is
reasonable that PSNR, SSIM, MSSSIM, and PCC metrics of pix2pixHD are all
higher than those of pix2pix, as shown in Table 1. It is noteworthy that metrics
of ours simultaneously achieve significant improvements over pix2pixHD, both
on the internal and external test datasets. Additionally, our method does not
increase the network capacity, and the training time is almost equal to that of
pix2pixHD (about 1900 s/epoch). These results demonstrate the significant ef-
fect and strong generalization capability of our method on boosting the cGAN’s
learning of FFPE-to-HE virtual staining.

Table 1. Experimental results of different methods. The best values are highlighted.
The second best values are underlined.

Method Internal Test External Test

PSNR SSIM MSSSIM PCC PSNR SSIM MSSSIM PCC
Benchmark Results

pix2pix 18.314 0.548 0.690 0.795 16.979 0.458 0.612 0.751
pix2pixHD 18.682 0.575 0.716 0.814 17.727 0.472 0.626 0.768

Ablation Study
HD+VGGLos 19.087 0.606 0.739 0.829 18.076 0.518 0.666 0.790
HD+CSLoss 19.168 0.619 0.748 0.833 18.203 0.516 0.664 0.791
HD+cat(���FFPE,HE) 19.238 0.605 0.736 0.831 18.833 0.541 0.675 0.813
HD+cat(CSMask,HE) 19.760 0.636 0.763 0.849 18.910 0.557 0.694 0.814
Ours 19.861 0.651 0.771 0.853 18.973 0.569 0.701 0.817

Ablation Study. We further explore the effectiveness of CSLoss and CSMask
within our method through the ablation study. Firstly, we focus on the ablation
experiments of CSLoss to evaluate its contribution to our method. Then, we turn
to CSMask and discuss its impact on our approach. Through these analyses, we
can gain a more comprehensive understanding of their roles and significance in
our method.

As shown in Table 1, the addition of CSLoss simultaneously improves the
PSNR, SSIM, MSSSIM, and PCC metrics of pix2pixHD on both the internal and
external test datasets, which indicates its effectiveness in boosting the aligned
cGAN’s learning of FFPE-to-HE virtual staining. Additionally, the addition of
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VGGLoss also results in comparable enhancements in these metrics, but lower
than those achieved by CSLoss on the internal test dataset or nearly equivalent to
those attained by CSLoss on the external test dataset. Given what is emphasized
in the methodology regarding the potential optimal values of wi

cs in LCS, it is
evident that CSLoss outperforms VGGLoss despite this caveat. In fact, this is
not difficult to understand, as the pretrained model of VGGLoss is based on
natural images rather than pathological images. Therefore, while VGGLoss may
capture certain features relevant to image quality, it might not be as effective in
capturing the specific characteristics of pathological images, such as those present
in the staining process. On the other hand, CSLoss is specifically designed to
consider these pathological image characteristics, leading to more accurate and
effective evaluations.

As shown in Table 1, replacing the blurry FFPE image with CSMask as
part of the input to D, denoted as cat(CSMask, HE), simultaneously and sig-
nificantly improves the PSNR, SSIM, MSSSIM and PCC metrics of pix2pixHD
on both the TRA and EXT datasets, which indicates its significant effective-
ness on boosting the aligned cGAN’s learning of FFPE-to-HE virtual staining.
Additionally, simply removing the FFPE image from the original input to D,
denoted as cat(���FFPE, HE), also improves the performance a lot, which validates
our speculation in the methodology that the concatenated blurry FFPE image
would disturb D from determining the authenticity of the HE image. This also
underscores the rationale behind replacing the blurry FFPE image with CS-
Mask. It is reasonable to concatenate CSMask with HE to assist, rather than
disturb the determination of D.

3.5 Qualitative Evaluation

To more intuitively reflect the difference between virtual and real images, we
define a concept of pixel difference map, whose pixel value at position (w, h) is
given by

1

C

C∑
i=1

|yi(w, h)− ŷi(w, h)|
scale

(6)

where C represents the number of channels of images. yi and ŷi represent one
channel of the real image and the virtual image, respectively. scale is the maxi-
mum of the pixel value range of images.

As shown in Eq. 6, a smaller pixel value on the pixel difference map means
a smaller difference between the virtual image and the real image. Fig. 2 shows
one map result of the internal test dataset and one map result of the external
test dataset, where a darker blue color on the pixel difference map indicates a
smaller value. It can be observed from Fig. 2 that, the virtual image of ours is
closer to the real image than the others on both the internal and external test
datasets.
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Fig. 2. The pixel difference maps between the real HE image and the corresponding
virtual HE images of different methods on the internal and external test datasets.

4 Conclusion

Based on the intuition that cell semantics should be integrated into FFPE-to-
HE virtual staining learning, we propose a framework to boost the learning of
the cGAN. Our method integrates low-level and high-level semantics into the
cGAN model in different ways (CSLoss and CSMask) and achieves a significant
improvement over the typical cGAN without the cost of network capacity or
training time. Furthermore, we demonstrate the improvements of CSLoss and
CSMask within our method, respectively. This indicates that, even under insuf-
ficient conditions, employing CSLoss or CSMask individually can still enhance
FFPE-to-HE virtual staining learning. The significant improvement and strong
generalization capability of our method are also demonstrated on an external
test dataset.
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