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Abstract. Current medical image classification efforts mainly aim for
higher average performance, often neglecting the balance between differ-
ent classes. This can lead to significant differences in recognition accu-
racy between classes and obvious recognition weaknesses. Without the
support of massive data, deep learning faces challenges in fine-grained
classification of fatty liver. In this paper, we propose an innovative deep
learning framework that combines feature decoupling and adaptive ad-
versarial training. Firstly, we employ two iteratively compressed decou-
plers to supervised decouple common features and specific features re-
lated to fatty liver in abdominal ultrasound images. Subsequently, the
decoupled features are concatenated with the original image after trans-
forming the color space and are fed into the classifier. During adver-
sarial training, we adaptively adjust the perturbation and balance the
adversarial strength by the accuracy of each class. The model will elim-
inate recognition weaknesses by correctly classifying adversarial sam-
ples, thus improving recognition robustness. Finally, the accuracy of our
method improved by 4.16%, achieving 82.95%. As demonstrated by ex-
tensive experiments, our method is a generalized learning framework
that can be directly used to eliminate the recognition weaknesses of any
classifier while improving its average performance. Code is available at
https://github.com/HP-ML/MICCAI2024.

Keywords: Fatty liver disease Detection · Deep feature decoupling ·
Unbalanced performance · Adaptive adversarial training.

1 Introduction

Deep learning has emerged as a pivotal tool, particularly in enhancing disease
detection [39]. However, deep learning for medical image classification faces chal-
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lenges due to the scarcity of data for certain rare diseases [16,17,9]. Addition-
ally, much of the existing research focuses on achieving average optimal perfor-
mance, with less emphasis on achieving balanced optimization across different
classes [23,30,10,12,13]. Unlike natural image classification, where the objectives
are clear and distinctions between classes, are evident. Different disease condi-
tions are often classified based on subtle features [29]. This makes the extraction
of diverse features for classification more complicated. Fig. 1 shows an example
of a fatty liver ultrasound image. Hence, we interpret unbalanced samples to
encompass not just data disparity but also the varying difficulty in recognition.

(1) (2) (3) (4)

Fig. 1. From left to right, the four ultrasound images are:(1) normal liver, (2) mild,
(3) moderate, and (4) severe fatty liver. Squares mark the approximate location of the
diaphragm and blood vessels. Arrows point to suspected locations of fat accumulation.

Fatty liver is a disease that is usually asymptomatic and reversible in its
early stages [3]. Without timely and accurate diagnosis, the deterioration of
fatty liver may lead to exacerbated liver damage, and even liver cancer. Ultra-
sonography is favored in fatty liver detection because of its cost-effectiveness
and widespread availability [6]. Distinguishing between different conditions of
fatty liver requires careful examination of relevant features [22]. However, ultra-
sound images are often unable to directly distinguish between these stages and
can only be described with vague adjectives such as "more", which complicates
accurate identification. In order to overcome the problem of abundant but low
quality information that makes it difficult for deep learning models to extract
key pathology features, scholars have proposed many feature decoupling meth-
ods [20,28,35]. These methods can guide us on how to make efficient use of fatty
liver ultrasound images.

Additionally, the difficulty of recognizing fatty liver disease varies from one
period to another. When the model learning process is supervised only by the av-
erage performance, it may focus on identifying only certain fatty liver conditions
and ignore hard-to-identify samples [37]. This learning process may increase the
likelihood of an incorrect fatty liver diagnosis, which may hinder the medical
diagnostic process. In dealing with unbalanced performance, recent research has
focused on the challenges posed by the long-tailed distribution of data [5,33,38],
with less attention paid to the model’s learning to a more intrinsic and robust
feature representation. Adversarial training can improve the model’s robustness
and enable the model to learn this feature representation [19,1,14]. In parallel,
the model needs to generate smoother decision boundaries to correctly categorize
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Fig. 2. Overview of the proposed framework. (1) For the feature decoupling phase,
we utilize the proposed ICFDNet to generate decoupled features and supervise the
decoupling process in different methods. (2) For the adversarial training phase, we use
an adaptive adversarial process to add corresponding perturbations to different images,
and concatenate them with the decoupled features.

adversarial samples [31,2,11,34]. To address the problem of low-quality images
with complex features in fatty liver ultrasound images, as well as the imbalance
in model performance between classes. We propose a feature decoupling com-
bined with adaptive adversarial training for fatty liver disease detection. The
major contributions are as follows:

1) We propose a novel deep learning model, Iterative Compression Feature
Decoupler(ICFDNet), designed for feature decoupling. ICFDNet boosts sam-
ple utilization and ensures comprehensive information extraction and use.

2) We adopt a color space transformation and selection strategy, which enriches
the dataset and minimizes noise interference in model optimization.

3) We utilize adversarial training to find the model’s weaknesses and use it
to generate more robust decision boundaries. Furthermore, the perturbation
and adversarial strength are adaptively adjusted by the accuracy rate of each
class, achieving an overall improvement in the model’s capabilities.

2 Proposed Methodology

This section will describe the entire workflow and implementation details. Fig. 2
shows an overview of our proposed method.
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Fig. 3. The network structure of ICFDNet. The network structure of ICFDNet utilizes
a U shaped architecture, with each of its ICBlocks, adopting a mini U shaped struc-
ture. This design ensures that the network undergoes a complete compression-recovery
process during each operation, aiming to refine key features repeatedly.

2.1 Iterative Compression Feature Decoupler, ICFDNet

Fatty liver ultrasound images have high information density and insignificant
feature differences. Therefore, the ICFDNet decoupler’s goal is to decouple com-
plex features into simple ones after learning. The structure of ICFDNet is shown
in the Fig. 3. The ICFDNet architecture is consistent with U-Net [24,26]. This
U pattern facilitates the extraction and decoupling of feature information from
images. At the same time, we draw inspiration from the piston movement and
realize that valuable information may not be effectively extracted by one com-
pression process. Thus, a mini U structure is used for all ICBlocks in ICFDNet.
More detailed features are extracted by the model after iterative compression.
Considering the importance of detail features in medical image recognition, this
iterative compression pattern is particularly suitable for feature decoupling in
fatty liver ultrasound image analysis. Within the ICBlock module, the learn-
ing process consists of two phases: encoding and decoding. Initially, the mod-
ule gradually downsamples the ultrasound image and captures local features
through multiple convolution layers. Subsequently, the generated feature maps
are passed through a multi-head self-attention module. The attention weights of
important features are dynamically adjusted in the global view. Finally, these
detailed features are enhanced by dilation convolution. Additionally, to prevent
information loss due to the rapid compression caused by the relatively shallow
depth of the ICBlock, ICFDNet employs multi-level pooling to provide multi-
scale information. It combines initial information with deep features to ensure
that key features are not forgotten throughout the process.

2.2 Accuracy-based Adaptive Adversarial Training

To improve the average performance of the classifiers and balance the inter-class
performance, we utilize adaptive adversarial training to eliminate the recognition
weaknesses of the classifiers. Adversarial samples are generated by adding per-
turbations to the original image that are not visible to the naked eye [18]. These
perturbations will help the model to generate more robust decision boundaries
in the process of making mistakes.
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Algorithm 1 Feature Decoupling and Adaptive Adversarial Training Optimiza-
tion Process.

Inputs: Model M(·) (including two ICFDNet: IC1(·), IC2(·); a classifier f(·)); Train
dataset D = (xi, yi); Perturbation ϵ, regularization parameter β; Weights λ1, λ2, λ3.
Outputs: A performance-balanced and robust model M(·).
Initialize ϵi ← ϵ, βi ← β
for epoch ∈ Epochs do

for minibatch do
Feat1, ˆpredi ← IC1(xi), Feat2, x̂← IC2(x); ▷ Feature decoupling
Yc ← x, xc ← cat(Feat1, F eat2, Yc); ▷ Transformation and concatenation
x′ ← max∥x′−x∥≤ϵi KL(f(xc), f(x

′)); ▷ Adversarial sample generation
lc ← Lc(x̂, x), ls ← Ls(predi, ŷi), lat ← Lat(f(xc), f(x

′)); ▷ Loss
l← λ1lc + λ2ls + λ3lat;

end for
Acci ← f(x′); ▷ Update parameters
ϵi ← Acci, βi ← Acci;

end for
return M(·).

During adversarial training, ultrasound image samples of fatty liver with
different conditions have different sensitivities to perturbations. And, it has been
demonstrated that different classes should be added with different perturbations
to achieve optimal results [31]. So, in order for the model to have the ability to
learn more essential features. We utilize the accuracy of different categories to
adaptively add perturbations to different categories. Its formula is expressed as
Eq. 1:

ϵi = (σ +Acci) · ϵ, (1)

where ϵ represents the initial perturbation, and Acci denotes the accuracy of
class i in the training set following the latest training epoch. The objective for
the subsequent epoch is to adjust the perturbation ϵi for class i, based on Acci.
To prevent ϵi from becoming too small and impeding the optimization process,
we introduce a hyperparameter σ to regulate the minimum perturbation level.

With the appropriate ϵi, we enable the model to capture more generalized
fatty liver characteristics across classes. The likelihood of inter-class confounding
is reduced. With our approach, the model not only obtains the basic features
of each class using the original samples but also identifies the more essential
features through the adversarial samples. However. the model may pay too much
attention to the confrontation samples and ignore the original samples during
the confrontation training process [25,27]. The converse also holds true. This
situation may lead to a decrease in model performance. Therefore, we refer to
TRADES [36] to add the regularization term parameter βi to balance it. The
calculation formula for βi is written as Eq. 2:

βi =
(µ+Acci) · β

1 + (µ+Acci) · β
, (2)
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The meaning of µ is consistent with σ, and it is also a hyperparameter. It can be
found that we compute βi for different results by Acci to achieve adaptive cus-
tomized weights between classes. The calibrated loss function Lat of the classifier
module can be expressed as Eq. 3:

Lat = (1− βi) · L(f(x), Y )︸ ︷︷ ︸
Lclean

+βi · max
∥x′−x∥≤ϵi

KL(f(x), f(x′))︸ ︷︷ ︸
Lrobust

, (3)

where f(x) is the output vector of classifier, Y is the label vector, L(·) is Cross-
entropy loss, and KL(·) is the KL divergence. During the training process, when
the accuracy of some classes is lower, the corresponding βi is lowered. And the
natural loss Lclean of these classes then receives a higher weight. This approach
allows the model to pay more attention to the original features of natural sam-
ples, thus improving initial performance. With the increase in accuracy, the
model gradually begins to focus on hard samples that are prone to confusion
and clarifies the features of these samples through perturbations.

2.3 Loss Function

Our learning process consists of two parts: decoupled feature generation and
classifier adversarial optimization. Alg. 1 shows the simplified algorithm. It can
be noticed that we have utilized three loss functions to jointly supervise the
model learning process. The total loss L is defined as Eq 4:

L = λ1Lc + λ2Ls + λ3Lat, (4)

where λ1, λ2, λ3 are the weight factors to control the impact of different parts
on the whole task. Lc and Ls supervise the decoupling process. Ls is BCELosss.
The formula for Lc is written as Eq. 5:

Lc =
√
(∆2(x)−∆2(x̂)) + ξ2 + L1, (5)

Where ∆2 is the Laplace operator, x̂ represents the reconstructed ultrasound im-
age, and ξ is a small constant used to ensure numerical stability. The important
features of ultrasound images are mainly centered on ambiguous textures and
boundaries. And Laplace operator is a second-order differential operator. It is
capable of focusing on rapidly changing regions in ultrasound images [21]. There-
fore, in the feature decoupling process of the fatty liver ultrasound image, using
Lc can supervise the decoupler to obtain the boundary and texture information.
The decoupler can better extract the high-frequency detail features. Meanwhile,
the L1 loss function can better keep the brightness and color invariant and does
not over-penalize the error. It further ensures better feature decoupling results.

3 Experiment

Dataset. The data were sourced from the physical examination information
of elderly fatty liver patients aged 65 and above who visited the Tiaodenghe
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Table 1. Accuracy performance of the baseline classifiers and ours in classifying ultra-
sound images of fatty liver. The Best and Worst results for different classes are marked
in italics. The Best Average Performance and Smallest Gap are highlighted.

Method Mild% Moderate% Severe% Normal% Best-Worst% Average%

ViT [4] 53.33 18.18 92.30 86.96 74.12 59.09
ResNet [7] 68.89 63.64 82.05 95.65 32.01 76.13
CBAM [32] 66.45 75.76 84.62 97.10 30.65 78.79
SENet [8] 63.33 78.79 84.62 95.65 32.32 78.78
SqueezeNet [15] 80.00 57.58 69.23 92.75 35.17 76.14

Ours 76.67 77.27 84.62 95.65 18.98 82.95

Community in Chenghua District, Chengdu City, from 2020 to 2022. To ensure
data quality, patients with blurry images due to massive liver occupancies, aero-
genic interference, or obese physique were excluded, ultimately selecting data
from 1265 patients. The ultrasound image diagnostic results were reviewed and
confirmed by two senior physicians.
Comparing with the Existing Methods. Many deep learning studies on
medical imaging utilize the best performing network as the underlying back-
bone. Special problems are targeted for modifications to achieve superior re-
sults. Consequently, we selected a deep learning classification model with strong
generalization capabilities as the base model. This selection strategy might not
prioritize the most recent network models, but it favors those with enhanced
generalization performance.

Table 1 shows the accuracy performance of different classifiers for the fatty
liver recognition task. The results show that the baseline’s performance varies
significantly between classes, and there are obvious shortcomings in the recog-
nition. It is worth celebrating that our method not only outperforms the other
methods in terms of average performance, achieving 82.95% but also obtains a
balanced performance in fatty liver classification. The best-worst performance
difference was significantly reduced, achieving 18.98%. Meanwhile, the recog-
nition performance of our method for hard-to-recognize classes (e.g., mild and
moderate fatty liver) was significantly improved. The obvious recognition weak-
nesses present in the baseline model were also effectively addressed. From the
resulting values, baseline’s best-worst performance spreads are all over 30%, with
the lowest being 30.65% for the CBAM model. Additionally, the average accu-
racy of these baselines is not outstanding, with none of them exceeding 80%. In
particular, ViT has the worst performance among all the methods. Not only does
it have the lowest average recognition accuracy, but also the performance differ-
ence between the best and worst performing classes is 74.12%. Ours improves
the average performance by 4.16% compared to the second-best CBAM, and the
best-worst performance difference decreases by 11.67%. The experimental results
demonstrate that the Ours approach may be more reliable in practical applica-
tions. This is due to its ability to provide consistent prediction across a wide
range of cases without overall performance fluctuations due to specific classes.
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Table 2. Ablation experiment results. Best in each group are highlighted; ↑ and ↓ rep-
resent accuracy improvements and decreases respectively; AT: Adversarial Training.

Method Mild% Moderate% Severe% Normal% Average%

ResNet [7] 68.89 63.64 82.05 95.65 76.13
ResNet+ICFDNet 73.33 83.33 84.62 84.06 80.30 ↑
ResNet+ICFDNet+AT 72.22 84.85 79.49 88.41 80.68 ↑

CBAM [32] 66.45 75.76 84.62 97.10 78.79
CBAM+ICFDNet 72.22 78.79 87.18 86.96 79.93 ↑
CBAM+ICFDNet+AT 73.33 81.82 76.92 92.78 81.06 ↑

SENet [8] 63.33 78.79 84.62 95.65 78.78
SENet+ICFDNet 75.89 82.33 84.53 73.91 78.41 ↓
SENet+ICFDNet+AT 74.44 84.85 84.62 76.81 79.17 ↑

SqueezeNet [15] 80.00 57.58 69.23 92.75 76.14
SqueezeNet+ICFDNet 73.33 77.27 76.92 91.30 79.55 ↑
SqueezeNet+ICFDNet+AT 76.67 77.27 84.62 95.65 82.95 ↑

Ablation Study. To demonstrate that our method can steadily improve the
average performance of the classifier while still taking into account the perfor-
mance balance between classes. We introduced different classification networks
into our method and the experimental results are shown in Table 2. From the
experimental results, it can be observed that the performance of different classifi-
cation networks has improved after employing the learning process we proposed.
They all obtained the best results within the group. After the combination of
SqueezeNet with ICFDNet, the average accuracy improved by 3.41%. And after
the addition of AT, it further increased by 3.4% reaching 82.95%. In addition,
all of the significant recognition shortcomings present in the base classifiers were
also improved considerably. In the moderate fatty liver, which is more difficult to
recognize, ResNet improved its recognition accuracy by 21.21%, SqueezeNet by
19.69%, and CBAM and SENet by more than 6%. We also discovered that the
accuracy decreased by 0.37% when SENet was only combined with ICFDNet,
but when integrated with the entire training process, the accuracy was enhanced.
This indicates that our approach has a certain level of complementarity. Taking
into account all the experimental results, the method we proposed can effectively
enhance all classification networks and eliminate their recognition weaknesses.

4 Conclusion

This paper introduces the distinctiveness of medical images compared to natu-
ral images in classification tasks. Then, we discuss existing work that prioritizes
higher average performance while ignoring the performance balance between
different classes. This leads to models with worse recognition performance for
certain classes. In response, we decouple complex features using ICFDNet. And,
we use adversarial training to eliminate the model’s recognition weaknesses. Ul-
timately, our method not only improves the average classifier performance but
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also takes into account the performance balance between different classes. Ad-
ditionally, our method can be directly adapted to any classifier, suitable for any
situation. However, experiments have shown that while class balancing has im-
proved, the accuracy of certain classes has decreased. In future work, we aim to
find a method to achieve it without sacrificing the accuracy of other classes.
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