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Abstract. Data-sharing in neuroimaging research alleviates the cost
and time constraints of collecting large sample sizes at a single location,
aiding the development of foundational models with deep learning. Yet,
challenges to data sharing, such as data privacy, ownership, and regula-
tory compliance, exist. Federated learning enables collaborative training
across sites while addressing many of these concerns. Connectomes are a
promising data type for data sharing and creating foundational models.
Yet, the field lacks a single, standardized atlas for constructing connec-
tomes. Connectomes are incomparable between these atlases, limiting
the utility of connectomes in federated learning. Further, fully reprocess-
ing raw data in a single pipeline is not a solution when sample sizes
range in the 10–100’s of thousands. Dedicated frameworks are needed
to efficiently harmonize previously processed connectomes from various
atlases for federated learning. We present Federate Learning for Exist-
ing Connectomes from Heterogeneous Atlases (FLECHA) to addresses
these challenges. FLECHA learns a mapping between atlas spaces on
an independent dataset, enabling the transformation of connectomes to
a common target space before federated learning. We assess FLECHA
using functional and structural connectomes processed with five atlases
from the Human Connectome Project. Our results show improved pre-
diction performance for FLECHA. They also demonstrate the potential
of FLECHA to generalize connectome-based models across diverse silos,
potentially enhancing the application of deep learning in neuroimaging.
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1 Introduction

Compiling large datasets at a single location in neuroimaging is challenging due
to high costs and time constraints. Consequently, data-sharing will be crucial to
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eventually train foundational models using deep learning [1,2]. However, simply
sharing raw data might not lead to these foundational models. Data privacy,
ownership, and regulatory compliance concerns persist, preventing the sharing
of raw data. Further, there is significant cost and complexity to preprocessing
raw imaging data [3]. As sample size grows, it will not be possible to reprocess
raw data in a harmonized manner for training models. Methods must be devel-
oped to efficiently harmonize previously processed data in a fraction of the time
needed to reprocess the data fully.

Connectomes, which measure structural and functional connectivity between
brain regions based on an atlas, are a promising data type for creating foun-
dational models. However, the field lacks a standard atlas for constructing con-
nectomes, leading to variability and incomparability between atlases [4, 5]. To
share connectomes from multiple sites, either a priori harmonization or frame-
works to account for different atlases are needed [6, 7]. These needs limit the
use of federated learning—a decentralized approach for collaborative training
of distributed data—due to connectomic heterogeneity [8,9]. Federated learning
alleviates many privacy and regulatory concerns by sharing only model param-
eters, not the data.

Bridging heterogeneous domains is challenging due to differences in feature
spaces [10]. Techniques like the entropic Gromov-Wasserstein distance [11] and
feature transformation [12] are limited by their need for data from both domains,
hindering their application in federated learning. Connectomes from different
atlases, derived from the same imaging data, can be transformed to a common
target space. Inspired by [13, 14], we introduce Federated Learning for Existing
Connectomes from Heterogeneous Atlases (FLECHA), which learns a mapping
between atlas spaces on an independent dataset and transforms connectomes
locally before training.

We evaluate FLECHA’s effectiveness by modeling phenotypes using connec-
tomes processed with five different atlases from the Human Connectome Project,
learning the atlas mapping on the Yale dataset. We validate FLECHA by com-
paring predictive performance of models trained on a single silo and federated
models trained across all silos. Results show improved prediction performance
in federated learning settings, regardless of imaging modality, prediction task,
and machine learning algorithms. FLECHA demonstrates potential for general-
izing connectome-based models across silos with varying atlases, advancing the
application of deep learning in neuroimaging research.

2 Materials and Methods

2.1 Federate Learning for Existing Connectomes from
Heterogeneous Atlases (FLECHA)

FLECHA consists of two steps. The first is to create a mapping between different
connectomes in an independant dataset using optimal transport. The second is to
use the mapping and federation learning to create a cross-silo predictive model.
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Fig. 1: Transforming connectomes across atlases. The mappings between atlases
are learned with optimal transport on an independent dataset. Node-wise time-
series data yields transportation matrices at each timepoint, with the average
providing the final mapping. The source atlas connectomes are decomposed into
node factors, transported to the target space using the mapping downloaded
online for estimating target connectomes.

Transforming connectomes across atlas space We transform connectomes
of the source atlas Cs ∈ Rns×ns to the target atlas, resulting in Ct ∈ Rnt×nt ,
ns and nt are the number of regions in the source and targets atlas. As shown
in Fig. 1, we first learn a mapping T between the source domain Ωs ∈ Rns

and target domain Ωt ∈ Rnt on an independent parcellated fMRI dataset. The
mapping is learned by transporting the brain activity at each timepoint between
the spaces of the two atlases. Given the a subject’s node-wise fMRI timeseries
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of atlas β, the optimal transport between nodes Ti at time i is learned by solving
the following optimal transport problem:

Ti = argmin
T∈Bi

⟨T,C⟩F

, where ⟨., .⟩F is the Frobenius dot product andC ≥ 0 is the cost matrix. Bi is the
set of probabilistic couplings between the two empirical distributions defined as:
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j ∈ R1×d are timeseries data of region i of the source atlas and
region j of the target atlas, ρ(., .) is the Pearson correlation. The final mapping
is determined by averaging the transport maps across all training subjects and
timepoints. We then decompose the source connectome into node factors Us ∈
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Fig. 2: FLECHA and the experimental setup for silos with connectomes from dif-
ferent atlases. (a) Initially, connectomes are locally transformed into the target
atlas using online mapping resources. The local models, trained on the trans-
formed data, are subsequently aggregated on the server and distributed back to
the local nodes for updates. (b) The participants are divided into five partitions
(silos) randomly, each of equal size. Different atlases are utilized at each silo.
One silo is designated as the testing set, while the remaining four serve as the
training set. We conducted a comparative analysis between the federated learn-
ing model trained on data from all four silos and models trained independently
on each silo. The whole process was repeated 100 times.

Rns×m and map them into the target space Ut ∈ Rnt×m using the mapping,
where m is the latent dimension. The target connectome could be estimated
using the multiplication of the node factors.

Federated learning We consider N silos, denoted as {P1, P2, ..., PN}. Each silo
Pk possesses a private dataset Dk = {(xk

i , y
k
i )}

Nk
i=1, where |xk| = Nk and the total

data points across all silos is N =
∑K

k=1 Nk. There can be three components in
a complete dataset: the feature space X , the label space Y and the ID space
I . The parties may not be identical in the feature space X and ID space I . In
our case: X is the connectomes of an atlas and label Y can be the diagnosis or
phenotype we want to predict. Since the atlases are different in different silos,
Xi ̸= Xj but Yi = Yj . Typically, each silo Pk has either a pre-trained local
network model or an initialized model, represented by f(wk). Thus, predicts
the output for the private sample xk using the local model f(wk). In contrast,
traditional centralized machine learning frameworks rely on a large, centralized
datasetD = D1∪D2∪...∪Dk, which integrates the private datasets from each silo
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to train a more effective centralized model f(w). Yet, data privacy concerns and
the limitations of data silos render traditional centralized learning impractical in
privacy-sensitive scenarios. Federated learning offers a solution by allowing each
silo to collaboratively train models while keeping their data private.

FLECHA consists of transforming the data to the target space locally and
two steps in decentralized optimization: 1) local update, and 2) communication
to a global server (Fig. 2a). In this paper, we chose two state-of-the-art federated
learning methods: FedAvg [15] and FedProx [8]. FedAvg operates by aggregating
the locally updated models from each silo to form a global model. The global
model update in FedAvg can be expressed as: wglobal =

1
N

∑K
k=1 Nkwk, where

wglobal is the global model, Nk is the number of data points in silo Pk’s dataset,
and wk is the local model of silo Pk. FedProx, on the other hand, introduces a
proximal term to the local objective function to mitigate the heterogeneity in
local data distributions. The local update in FedProx can be formulated as:

wt+1
k = argmin

w

(
Lk(w) +

µ

2
∥w − wt∥2

)
, where Lk(w) is the local loss function for client Pk, µ is a non-negative proximal
term coefficient, and wt is the global model at iteration t. Since linear models
are also widely used in connectome modeling, we implemented ridge regression
as a comparison. For the federated learning setting, we simply averaged the
coefficients of the ridge regression model across silos (Coef avg).

2.2 Datasets

Yale dataset We used resting-state data from 100 individuals at the Yale
School of Medicine. 48 minutes of functional data were collected per individual—
50 females (mean age=33.3±12.3) and 50 males (mean age=34.9±10.1). Dataset
and processing information can be found in [16]. Using five atlases, we parcellated
the brain into regions per each atlas. We computed regional time series for each
subject by averaging voxel-wise fMRI data within each region, resulting in an
n× t matrix representing brain activity, with t being 1872 time points.

HCP dataset We used the HCP S900 dataset [17], which included 515 sub-
jects (241 males, ages 22–37) meeting strict criteria: full participation in nine
fMRI conditions, minimal motion (mean frame-to-frame displacement ⩽ 0.1mm,
max ⩽ 0.15mm), and available working memory measures (WM Task 0bk Acc).
We also parcellated the brain using the five atlases and computed regional time
series. The pairwise Pearson correlation between all node time series was cal-
culated and Fisher z-transformed, yielding a n × n matrix for each scan. We
predicted working memory using functional connectomes in the HCP dataset.

HCP-D dataset The Human Connectome Project in Development (HCP-D)
is a comprehensive neuroimaging dataset from ages 5 to 21. This dataset in-
cludes 635 subjects (292 males; ages 5-21). Diffusion MRI data were processed
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using the SHARD pipeline and reconstructed with generalized q-sampling imag-
ing, followed by whole-brain fiber tracking in DSI-studio, resulting in 1,000,000
streamlines per individual. Structural connectomes were built for each individual
using five atlases with a connectivity threshold of 0.001, and pairwise connec-
tivity strength was computed as the average QA value of each connecting fiber,
resulting in an n×n matrix representing each participant’s brain structural con-
nectome. We predicted age using structural connectomes in the HCP-D dataset.

2.3 Atlases

We used five different atlases. The Shen atlas [18] was created from functional
connectivity data of 45 adults, resulting in a 268-node atlas covering the entire
brain, using a group-wise spectral clustering algorithm. The Craddock atlas [19]
was based on data from 41 adults and consists of a 200-node atlas covering the
complete brain, constructed using the N-cut algorithm. The Schaefer atlas [20]
utilized data from 744 adults, yielding a 400-node atlas focused on the cortex,
created through a gradient-weighted Markov Random Field (gwMRF) model.
The Brainnetome atlas [21] was derived from structural connectivity data of 40
adults from the HCP, resulting in a 246-node atlas covering both the cortex
and sub-cortex constructed using tractography. The Dosenbach atlas [22] was
developed through meta-analyses of task-related fMRI studies, comprising 160
nodes covering the cortex, cerebellum, and some sub-cortical regions.

2.4 Experiments

We mapped atlas spaces using parcellated fMRI data from the Yale dataset and
conducted predictive modeling on the HCP dataset for functional connectomes
and the HCP-D dataset for structural connectomes. Age and working memory
were chosen as primary variables due to their ease of measurement, common
use in brain-behavior models, and clinical relevance. Structural connectomes are
suitable for predicting age, while functional connectomes correlate with higher-
order cognitive functions like working memory. Both variables are treated as
continuous.

Participants were divided into five equal-sized silos, each using a distinct atlas
(Fig. 2b). A 3-layer Multilayer Perceptron (MLP) was trained using federated
learning, with four silos for training and one for testing, and compared to models
trained independently on each silo. The experiment was repeated 100 times with
different partitions, and performance was evaluated using Pearson correlation for
its standardization and comparability.

The MLP comprised three fully connected layers with n(n − 1)/2, 64, and
8 nodes, and a dropout rate of 0.25. Batch normalization and ReLU activation
followed the first two layers. Training parameters included mean squared error
loss, SGD optimizer (learning rate: 0.001, momentum: 0.9, weight decay: 0.001),
and local updates based on communication pace τ . We set 20 total steps per
epoch, with the batch size of each silo determined by dividing the training data
by 20. Models were aggregated every τ = 5 steps.
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Fig. 3: Prediction performance of the average ridge regression model (Coef avg)
and models trained independently on each silo, with colors indicating the atlas
used in the training silos. The left plot presents the results of working mem-
ory prediction using functional connectomes (FC) on the HCP dataset, while
the right plot depicts age prediction using structural connectomes (SC). The
horizontal axis lists the atlas names associated with the testing silos. In the
experiments, all participants were divided into five partitions (silos) 100 times.
Stars above the boxplots for Coef avg signify significantly higher prediction per-
formance than all other models (p < 0.001).

3 Results

3.1 Aggregating linear models across silos improves prediction

We compared the prediction performance of ridge regression models trained on
a single silo and the averaged model across silos. As shown in Fig. 3, for ridge
regression, averaging coefficients of models across silos (Coef avg) showed a sig-
nificant improvement (p < 0.001) in prediction performance relative to models
trained at a single silo using functional connectivity (FC) data. However, this
enhancement was less marked when structural connectivity (SC) data were em-
ployed. When the Shen and Craddock atlases were the targets, the Coef avg
method demonstrated only a slightly better performance (0.001 < p < 0.005)
than the second-best model from a single silo.

3.2 Federated learning across silos improves generalizability

We compared the prediction performance of DNNs trained on a single silo and
trained across silos in federated approaches. Federated learning models (FedAvg
and FedProx) demonstrated superior performance to models trained on individ-
ual silos across all data modalities, predictive tasks, and target atlases (Fig. 4).
DNNs trained on a single silo overfit due to the limited sample size and noise
generated by atlas transformation. Yet, FLECHA significantly improve gener-
alizability. No significant differences exist between the performance of FedAvg
and FedProx.



8 Authors Suppressed Due to Excessive Length

FC (Working Memory) SC (Age)

Shen
Craddock

Dosenbach

Schaefer

Brainnetome

Shen
Craddock
Dosenbach
Schaefer
Brainnetome
FedAvg

Shen
Craddock

Dosenbach

Schaefer

Brainnetome

FedProx

Fig. 4: Prediction performance of FLECHA (FedAvg and FedProx) and models
trained independently on each silo, with colors indicating the atlas used in the
training silo. There was no significant difference between the performance of
FedAvg and FedProx. Stars above the boxplots for FedAvg and FedProx signify
significantly higher prediction performance than comparison models (p < 0.001)

4 Conclusions

In this paper, we present FLECHA, a method to locally transform connectomes
to a common atlas space, facilitating collaborative training across silos with con-
nectomes from different atlases. FLECHA improves predictive performance, re-
duces overfitting, and enhances model generalizability by leveraging larger, more
diverse datasets. Despite potential noise from atlas transformations, FLECHA
ensures cross-silo robustness, allowing the model to focus on core connectome
signals and enhance generalization.

In summary, FLECHA offers a novel approach for federated learning with
connectomes from heterogeneous atlas spaces, addressing data sharing and het-
erogeneity challenges in connectomics.

Future work will include more tasks, encompassing classification and other
labels. Ablation studies with a broader range of atlases, varying in node number
and coverage, will help identify atlases too coarse for FLECHA. We will explore
machine unlearning to mitigate the impact of individual silos on the centralized
model. Additionally, FLECHA will be tested in real-world scenarios where data
heterogeneity results from different scanners and preprocessing steps.
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