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Abstract. Hyperspectral imaging (HSI) is emerging as a promising
novel imaging modality with various potential surgical applications. Cur-
rently available cameras, however, suffer from poor integration into the
clinical workflow because they require the lights to be switched off, or the
camera to be manually recalibrated as soon as lighting conditions change.
Given this critical bottleneck, the contribution of this paper is threefold:
(1) We demonstrate that dynamically changing lighting conditions in the
operating room dramatically affect the performance of HSI applications,
namely physiological parameter estimation, and surgical scene segmen-
tation. (2) We propose a novel learning-based approach to automatically
recalibrating hyperspectral images during surgery and show that it is
sufficiently accurate to replace the tedious process of white reference-
based recalibration. (3) Based on a total of 742 HSI cubes from a phan-
tom, porcine models, and rats we show that our recalibration method
not only outperforms previously proposed methods, but also generalizes
across species, lighting conditions, and image processing tasks. Due to
its simple workflow integration as well as high accuracy, speed, and gen-
eralization capabilities, our method could evolve as a central component
in clinical surgical HSI.

⋆ Silvia Seidlitz and Lena Maier-Hein contributed equally to this work.
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1 Introduction

Hyperspectral imaging (HSI) emerges as a promising medical imaging modality
that offers distinct advantages over conventional RGB imaging. In particular,
HSI captures spectral information across numerous contiguous bands, thereby
enriching the representation of the underlying sample. Recent works have demon-
strated the resulting enhancement in tissue classification [10, 11, 20, 21, 25], and
the capability of estimating physiological tissue parameters [1,3,6,13,15,22,26].
However, in open surgery, spectral data is affected by changes in illumination
and must be correctly calibrated whenever lighting conditions vary [8]. The stan-
dard approach for experimental surgeries is to switch off all external light sources
before acquisition to ensure precise measurements [24]. As this protocol severely
disrupts the clinical workflow, it is presumed not to be consistently applied –
leading to unreliable data acquisition and severe failures in downstream tasks,
as illustrated in Fig. 1. This may be one reason why spectral imaging has not yet
found widespread use in clinical practice. Conventional HSI calibration is con-
ducted with physical white reference measurements, capturing the surrounding
illumination. However, they pose challenges in terms of time consumption and
sterility, rendering them impractical in the operating room (OR) context. The
proposed use of white OR rulers as a sterile alternative [4] still presents con-
siderable challenges in the form of additional workload and their small size. A
number of automatic calibration algorithms originally devised for RGB imaging,
such as Gray-world [5] and Max-RGB [16], recover a global illuminant of the
scene based on intensity statistics. An alternative calibration strategy tailored
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Fig. 1. Motivation: Current hyperspectral cameras, which require known lighting con-
ditions, fail in real-world scenarios with dynamically changing lighting conditions.
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Fig. 2. The proposed approach replaces tedious manual calibration with a
dynamic fully-automatic approach. The core of our data-centric method is a 3D-
convolutional neural network, trained on in vivo data with artificial light manipulations.
At inference time, it takes a raw hyperspectral image as input and generates the cor-
responding white reference image. The prediction of the white tile image can be used
for subsequent calibration of the input image.

specifically to HSI leverages specular highlights for illuminant estimation [2].
However, these methods rely on unrealistic assumptions, such as homogeneous
illumination across the entire surgical scene, and were also not tested in in vivo
environments during surgery. Multi-illuminant color constancy models devised
for RGB imaging have shown potential in overcoming this issue, as they pre-
dict pixel-wise illuminants for calibration [7,9,14,19,23]. Notably, convolutional
neural networks (CNNs) have shown superior performance compared to non-
learning-based methods [7, 23]. Spectral imaging has so far seen the develop-
ment of one deep learning approach for multi-illuminant calibration, factorizing
reflectance and illumination through an unrolling network [17].

Overall, the methods proposed in the literature either remain untested for
surgical HSI and/or are conceptually not suitable for spatially resolved cali-
bration. Given this bottleneck, the mission of our work was to develop a new
workflow-optimized calibration approach that enables widespread clinical spec-
tral imaging. Our specific contribution is threefold: (1) We demonstrate that
dynamically changing lighting conditions in the OR dramatically affect the per-
formance of in vivo HSI applications, and previously proposed calibration meth-
ods fail to restore optimal performance. (2) We present a novel learning-based
approach to performing spatially resolved light recalibration of surgical hyper-
spectral images. Specifically, we propose to replace conventional physical white
reference measurements with a data-driven prediction of the corresponding white
tile measurement. This enables a seamless and sterile recalibration process dur-
ing surgery. (3) Based on the downstream tasks of semantic segmentation and
physiological parameter estimation, we show that our recalibration method not
only outperforms previous methods, but also generalizes across species, lighting
conditions, and image processing tasks.
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2 Materials and Methods

The main issue in data-driven calibration is the generalization to unseen set-
tings. To make our method conceptually robust to domain shifts, we propose
estimating the white tile measurement that we would obtain for a given scene
rather than directly predicting the recalibrated image. Our approach is based
on the hypothesis that capturing a representative set of tissue configurations,
including illumination conditions, as a training set is infeasible. We therefore
disentangle the space of possible illuminations from the space of possible tissue
configurations, as illustrated in Fig. 2. More specifically, we employ a two-dataset
training paradigm for the neural network. The first dataset, the illumination
dataset, comprises real and simulated white reference images encompassing a
wide range of illumination conditions encountered within the OR. The second
dataset consists of accurately calibrated HSI cubes of clinically relevant sam-
ples. To simulate uncalibrated HSI cubes, each image in the sample dataset is
augmented by multiplication with the associated white reference image. Sub-
sequently, the neural network is trained to retrieve the white reference image
from the simulated uncalibrated HSI cube. During inference, an uncalibrated
HSI cube, possibly acquired with stray light, is fed into the neural network to
predict the white reference image needed for illumination calibration.

2.1 Datasets

Training and validation was performed exclusively on porcine data, while testing
was performed for unseen stray light scenarios on unseen porcine individuals, a
phantom and rats, as summarized in Fig. 3. While the phantom colorchecker
board dataset was acquired with the Tivita® 2.0 Surgery (Diaspective Vision
GmbH, Am Salzhaff, Germany) featuring light-emitting diode (LED) illumina-
tion, the others were captured with the halogen-based Tivita® Tissue. As these
light sources exhibit different behavior when interfering with the main stray light
source, namely LED-based OR lights, we validated on both systems.

Measured illumination dataset The purpose of this dataset was to cap-
ture a variety of representative OR lighting conditions for algorithm training.
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To this end, we acquired white reference images in an OR to capture camera
light and additional stray light sources such as surgical lights, ceiling lights, or
daylight. The surgical lights used in our study were manufactured by Dr. Mach
and are composed of LEDs (Model: LED 8 MC). Diverse stray light scenarios
were achieved by varying the angle, distance, and number of surgical lights as
well as adjusting blinds or ceiling light, resulting in a wide range of illumination
spectra. As the two HSI systems used in this study differ in the light sources, we
acquired one illumination dataset with each camera: ds dev ill led (LED) and
ds dev ill hal (halogen).

In vivo porcine development dataset: For model development, we cu-
rated a subset of the publicly available HSI dataset HeiPorSPECTRAL [24],
ds test pig , consisting of accurately calibrated hyperspectral images of surgical
scenes semantically annotated with 18 organ classes.

Test datasets: Comprehensive validation of our methodology was performed
based on the three datasets ds test pig , ds test cc and ds test rat summarized
in Fig. 3. In-domain testing of calibration quality was performed with data re-
sembling the training data. To simulate stray light in ds test pig , we acquired
a white reference test set ds test ill hal with four stray light scenarios. Col-
orchecker boards imaged under various lighting conditions were used for the
assessment of recalibration performance based on highly reliable reference data
(ds test cc). The effect of the recalibration method on surgical image analysis was
assessed by means of the downstream tasks organ segmentation and physiologi-
cal parameter analysis using in-domain and out of domain in vivo hyperspectral
imaging data from porcine models (ds test pig) and rats (ds test rat).

2.2 Physics-based illumination simulation

To implement the data-centric recalibration concept, we focused on the model-
based generation of plausible white tile data. To overcome the resource-intensive
white reference acquisitions, we enhanced ds dev ill led and ds dev ill hal by
synthesizing white tile images based on real L1-normalized white tile images.
LED simulations: Surgical lights are the main source of stray light in the
OR. For our LED-based surgical lights, wave interference with an LED-based
HSI system is approximately constructive, thus local extrema in the spectrum of
the camera light source are preserved. This behavior can be modeled by linear
inter- and extrapolations of white reference images. To avoid the generation
of duplicates, we first conduct clustering, before combining images of distinct
clusters.
Halogen simulations: In contrast to LED spectra, halogen spectra differ in
terms of width and the number of local extrema. Consequently, the interference
with LED light does not preserve local extrema. To obtain powerful simulations
of stray light-affected halogen spectra, we propose to mathematically model the
curves. Inspired by Planck’s radiation law, we empirically observed that the
following parametric function describes stray light-affected halogen spectra:

fa,b,c,d(λ) =
(aλ− b)3

exp(cλ− d)− 1
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where f denotes the intensity, λ the wavelength and a, b, c, d the parameters.
Least-square optimization to the mean spectra of ds dev ill hal yielded parame-
ter ranges for a,b,c,d so that fa,b,c,d(λ) adequately models the illumination con-
ditions captured in ds dev ill hal . Increasing the upper bounds of these ranges
led to halogen spectra with higher levels of stray light. To synthesize a hy-
perspectral image that features realistic spatial variations of intensity from the
simulated light spectrum fa,b,c,d(λ), we leveraged the acquired images. More con-
cretely, a hyperspectral image I(i, j, λ) is randomly selected from ds dev ill hal
and divided by its spatially averaged spectrum I(λ). By multiplication with
the simulated spectrum fa,b,c,d(λ), we obtain a simulated white reference im-
age Is(i, j, λ) with the simulated spectrum fa,b,c,d(λ) as mean spectrum and the
spatial variations from I.

Is(i, j, λ) = fa,b,c,d(λ)⊙ I(i, j, λ)⊘ I(λ)

To further enhance the coverage of illumination conditions, inter- and extrapo-
lation was performed as for the LED simulations. Overall, this process yielded
a set of about 200 different illumination conditions for each light source.

2.3 Neural network implementation details

We feed the HSI cubes into a 3D CNN that employs an autoencoder architec-
ture, utilizing ResNet blocks [12] in both the encoder and decoder. Two design
decisions were particularly important for our method’s success: During train-
ing, we only optimize the predicted white reference image and not the resulting
calibrated sample image. Furthermore, we omit skip connections between the
encoder and decoder. Both design choices aim to prevent the model from relying
heavily on the content of the sample images, instead focusing on learning the
illumination information. As loss function, we employ the MSE-reconstruction
loss between the predicted and original white reference image. Further imple-
mentation details are provided in Suppl. Tab. 1.

3 Experiments and Results

We investigated the following research questions (RQs):

(RQ1) How do dynamically changing lighting conditions in the OR affect the
performance of hyperspectral image analysis algorithms?

(RQ2) Are neural networks capable of replacing white tile recalibration of hy-
perspectral cameras in the OR?

(RQ3) To what extent can neural network-based recalibration mitigate the per-
formance drop of hyperspectral image analysis algorithms under varying
lighting conditions?

For all experiments involving our method, we used the same model trained ex-
clusively on porcine data (ds dev pig). The generalization to unseen domains
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Fig. 4. State-of-the-art methods fail under dynamically changing light con-
ditions. Our approach addresses this issue. (Left) Results on colorchecker dataset
ds test cc. The boxplots show the cosine similarity between recalibrated and reference
spectra, averaged across colors. Red line: Gold standard of manual white tile calibra-
tion. (Right) Results on semantic segmentation dataset ds test pig . Red line: Mean
DSC in the absence of stray light. Points: Different stray light scenarios.

(here: colorchecker boards and rats) was investigated on untouched test sets.

Experiment RQ1:We used the traditional approaches Gray-world [5], Max-
RGB [16], and a method based on specular highlights [2], as baselines. Addition-
ally, we integrated a learning-based method by adapting the RGB-calibration
framework AngularGAN [23] to hyperspectral imaging. To this end, we trained
AngularGAN on ds dev pig augmented by the originally acquired white refer-
ence images. As downstream tasks, we conducted semantic organ segmentation
and physiological parameter estimation on in vivo data.

For the semantic organ segmentation task, we leveraged the accurately cal-
ibrated ds test pig and illumination test set ds test ill hal to obtain four stray
light-affected versions of each image in ds test pig . Subsequently, the resulting
664 images were recalibrated by one of the methods, followed by the inference
of segmentation masks using a public segmentation model trained on calibrated
pig organ images [21]. As segmentation metrics, the Dice similarity coefficient
(DSC) and the normalized surface distance (NSD) were used, as recommended
by [18]. For physiological parameter estimation, recalibration procedures were
applied to ds test rat , followed by computation of the oxygen saturation, perfu-
sion, hemoglobin, and water index [15]. To gauge calibration performance, mean
absolute errors were calculated between the stray light-affected parameters and
reference values derived from images devoid of stray light interference. For both
downstream tasks, the hierarchical structure of the data was respected during
aggregation.

Fig. 4 and Suppl. Fig. 1 show that existing HSI calibration techniques lack
adequate accuracy. Even the best performing methods (Specular highlights and
AngularGAN) come with a decrease of the DSC of more than 15%.

Similarly (Fig. 5), the tissue parameter maps change substantially under
varying lighting conditions, even when manual white tile recalibration was per-
formed (cf. Suppl. Fig. 2).
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Fig. 5. In contrast to related methods, our approach generalizes across
species. (Left) Organ-specific absolute oxygen saturation errors between calibrated rat
images without stray light and corresponding stray light images that are recalibrated
by one of the methods. Red line: Mean performance of the gold standard (manual white
tile calibration). (Right) Our method yields precise hemoglobin index estimates under
dynamically changing lighting conditions.

Experiment RQ2 To measure the calibration accuracy in an OOD setting
with a highly reliable reference, we applied our model trained on porcine data
to recalibrate ds test cc. As illustrated in Fig. 4, our method demonstrates the
highest average cosine similarity. They are almost on par with the gold standard
of manually acquiring white tile measurements.

Experiment RQ3 To assess the capability of our method to boost the down-
stream task performance, we performed Experiment RQ1 on our recalibration
approach. As shown in Figs. 4 and 5, our method outperforms previous methods
by a large margin. For semantic segmentation, relative improvements of the DSC
from 14% to 191% were obtained. For oxygen saturation estimation, the error
could be reduced by 50% to 69%. Similar performance gains were obtained for
other tissue parameters (cf. Suppl. Fig. 2). A qualitative assessment of the high
fidelity of our recalibrated tissue spectra is available in Suppl. Fig. 3.

4 Discussion

We were the first to provide in vivo evidence that dynamically changing lighting
conditions in the OR can cause dramatic failures in HSI downstream analysis
such as semantic segmentation. This is a finding of high clinical relevance because
the manual white tile-based recalibration of cameras during surgery severely dis-
rupts the clinical workflow and may currently hinder widespread clinical adop-
tion of HSI cameras. The proposed method represents the only calibration model
in our analysis that is capable of maintaining high accuracy independently of the
downstream task and domain, indicating high applicability for clinical use cases.
It also features several major conceptual advantages: White reference measure-
ments are not only impractical as they suffer from sterilization and workflow
issues, but are also prone to oversaturation. This explains the suboptimal per-
formance on the rat data (see Fig. 5). Specular highlights and Max-RGB exhibit
high calibration accuracy on the colorchecker board, as both methods calibrate
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the images with the white color field by design, but fail to generalize to in vivo
scenarios. Note that these methods recover a global illumination estimate, which
is not sufficient in the case of spatially heterogeneous illumination encountered in
the OR. In fact, we also saw drops in performance when reducing the estimations
of white tile calibration (classic and data-driven) to a global estimate. Overall,
the core strength of our approach is its generalizability. Notably, it outperforms
the competing neural network method AngularGAN even when trained on the
exact same data as our method. We attribute this to the inherent domain shift
of auto-encoded images.

A limitation of our work could be seen in the fact that we did not cover
all possible illumination settings that can occur in practice. However, as we
focused on the most important light sources (surgical lights and ceiling light)
and conducted our validation on highly diverse datasets, we are confident that
our conclusions will hold in diverse settings.

In conclusion, our work presents a novel learning-based light calibration
method for hyperspectral imaging. The proposed methodology not only outper-
forms previously proposed approaches in various settings but can be seamlessly
incorporated into hyperspectral imaging systems for ORs. Our work could there-
fore pave the way for clinical workflow-optimized and robust HSI in surgery.
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