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Abstract. Assessment of cardiac function typically relies on the Left
Ventricular Ejection Fraction (LVEF), i.e., the ratio between diastolic
and systolic volumes. However, inconsistent LVEF values have been re-
ported in many clinic situations. This study introduces a novel approach
to quantify the cardiac function by analyzing the frequency patterns of
the segmented Left Ventricle (LV) along the entire cardiac cycle in the
four-chamber-image of echocardiography videos. After automatic seg-
mentation of the left ventricle, the area is computed during a complete
cycle and the obtained signal is transformed to the frequency space. A
soft clustering of the spectrum magnitude was performed with 7.835 cases
from the EchoNet-dynamic open database by applying spectral cluster-
ing with Euclidean distance and eigengap heuristics to obtain four dense
groups. Once groups were set, the medoid of each was used as represen-
tant, and for a set of 99 test cases from a local collection with different
underlying pathology, the magnitude distance to the medoid was re-
placed by the norm of the sum of vectors representing both the medoid
and a particular case making an angle estimated from the dot product
between the temporal signals obtained from the inverse Fourier trans-
form of the spectrum phase of each and a constant magnitude. Results
show the four clusters characterize different types of patterns, and while
LVEF was usually spread within clusters and mixed up the clinic condi-
tion, the new indicator showed a narrow progression consistent with the
particular pathology degree.

Keywords: Echocardiographic videos- Left Ventricular Dynamics- Ejec-
tion Fraction- Segmentation- Fast Fourier Transform- Clustering
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1 Introduction

Evaluation of the Cardiac Function (CF) is usually performed by estimation of
the LVEF [13I82], which is computed as the volume fraction between the End-
of-Systole and End-of-Diastole. This index is normal when greater than 50%, it is
mildly reduced (MR-LVEF) between 40% and 50%, and reduced (R-LVEF) when
lower than 40% [1l4]. Cardiologists calculate the LVEF using Simpson’s method,
i.e., the expert manually segments the LVEF in echocardiography videos [0]
at the end-of-diastole and end-of-systole and approximate the LV volumes[Il3].
Despite being the most used cardiac function indicator, the LVEF has been
reported to show low sensibility to changes in the cardiac function while it also
underestimates such function variations [2JT4].

The LVEF estimation usually requires an accurate segmentation of the LV
chamber in several cardiac frames, which is hardly reproducible by both the
multiplicative noise and the high inter-observer variability [3I7]. In this scenario,
different approaches have attempted to automatize the segmentation, particu-
larly sophisticated models such as Convolutional Neural Networks (CNN) [9],
residual autoencoding networks and BERT model [10], and Graph Neural Net-
works (GNNs) [7]. Nevertheless, none of these approaches have coped with the
real problem, i.e., the LVEF, computed from two times of the cardiac cycle, can
hardly approximate the function of an organ designed to adapt to very different
and complex conditions. In practice, a systematic incoherence has been observed
between the degree of the pathology and the computed LVEF value [2/4T3]. The
LVEF in particular depends on pre and post-load conditions which are highly
variable within the cardiac cycle while it captures no information at all about
the contractility or the condition of the cardiac muscle. [2/5/8/TT].

Although currently used, the Left Ventricular Ejection Fraction (LVEF) is
still limited in clinic practice [2I3J5J814]. A main contribution of this paper is
an indicator of the cardiac function which establishes the notion of distance by
quantifying the fundamental parts of a periodic signal: the phase and the mag-
nitude. Spectral decomposition of echocardiography signals is not novel, a main
example being tissue Doppler imaging. However, these frequential analysis meth-
ods use exclusively the magnitude information of the Fourier transform. What is
new in the present proposal is how phase information is integrated into the anal-
ysis and the importance of considering this at categorizing different pathologies.
In this case, phase information helps us to establish when a particular frequency
component occurs during the cardiac cycle and use this to compare the severity
of different cardiac stages. The combination of magnitude and phase allow us
to refine the notion of distance between cases pushing similar cases closer and
different cases farther away.

Using a large number of cases, four different magnitude patterns are set by a
non supervised soft clustering method. Once these frequential representants, the
medoid of each group, are available, the distance of each case with respect to the
medoid is corrected. For doing so, temporal series of the medoid and each of the
cases are reconstructed from the spectral phase of each and a unitary magnitude.
The dot product between the medoid and each of the cases establishes an angle
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(the temporal phase) which is then used to correct the original cluster distance.
The underlying idea behind this proposal is to summarize the entire cardiac cycle
into features that can be comparable and describe complex states and patterns
of heart dynamics.

The rest of the article is organized as follows: section |2 presents the methods
used, section [3] introduces the principal results, and finally, section [d] discusses
the main conclusions.

2 Methods

The approach involves three steps as shown in Fig. [l Initially, the quality of
echocardiographic videos is improved and standardized in the preprocessing.
Afterward, a simplified U-Net architecture segments the left ventricle chamber
along the entire cardiac cycle. Then, the Fourier transform is applied to the
temporal series obtained from the area of the segmented LV chamber along
the whole cycle. Afterward, the magnitude and phase are used to construct a
similarity metric that drives the severity quantification. The details of each step
are elaborated below.

Preprocessing Automatic segmentation Fourier analysis Spectral Clustering
0{ Spectral Clustering Embedding
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Fig. 1. Pipeline of the characterization of left ventricular dynamics in the frequency
domain to estimate the cardiac function.

2.1 Preprocessing step

To ensure compatibility between datasets, specifically between the EchoNet-
dynamic database [9] and a proprietary collection used in the evaluation, a se-
ries of preprocessing steps were performed as follows: firstly, the specific region
of interest of the echocardiogram cone was identified, followed by cropping and
removing any metadata information from the video. Afterward, a cubic interpo-
lation was applied to each frame resized to 112 x 112 pixels, and finally, all the
videos were re-sampled at 50 FPS.

2.2 Automatic segmentation

A customized U-Net segmented the left chamber in echocardiographic videos. In
a previous work, this network demonstrated outstanding segmentation results
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(Dice of 0.93), a considerable reduction of the number of parameters, and a
similar performance, when compared with the original U-Net architecture [12].

2.3 Analysis in the Frequency Domain

After segmenting the left ventricular chamber during several cardiac cycles, the
temporal series of the ventricular area showed a periodic pattern: Peaks and
valleys correspond to the End-of-Diastole and End-of-Systole, respectively. After
removing the DC component, only one cardiac cycle from each case was taken.

Fourier analysis transforms the temporal series into magnitude and phase
spectra, being the magnitude the strength of the frequency components, and
the phase their temporal locations. Specifically, the construction of the cardiac
function descriptor is a modified version of the Euclidean distance among actual
cases as follows in the algorithm [I}

Algorithm 1 Spectral Analysis to describe the cardiac function
: Input: Temporal series of cardiac cases
Output: Assigned clusters with updated magnitude using phase information
Step 1: Mapping to the Fourier space
for each case in the dataset do

Apply Fast Fourier Transform (FFT) to obtain magnitude and phase spectrum
end for

Step 2: Finding out the frequential representant of the cardiac cycle

Perform spectral clustering of the magnitude with 7,835 cases from the Echonet

database and 99 cases from a local collection and registered clinic state

9: Step 3: Re-estimating intra-cluster distances using phase information
for those cases with known clinical history

10: for each of the 99 cases do

11: Set case; to a particular group

12: Apply inverse Fourier Transform using the phase spectrum and a unitary mag-
nitude for both case; and the medoid

13: Compute dot product of the reconstructed temporal series between case; and
the group medoid

14: Recover angle 6 = arccos (m%)

15: Set a new case; distance as the norm of the sum of two vectors, one with norm
1 and the other 1 + stored distance, and making angle 0

16: Store this new distance for case;

17: end for

2.4 Dataset

The EchoNet-dynamic database[9], a publicly available project, published 10,030
apical-4-chamber echocardiography videos from individuals who underwent imag-
ing between 2016 and 2018 as part of routine clinical care at Stanford University
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Hospital [9]. Only 7,886 were selected for the present investigation since they
have the same sampling frequency (50 FPS), they did not present variable im-
age orientation during acquisition (Figure B), or breathing interference during
the first or second cardiac cycle (Figure C) and echo-Doppler mode cases were
excluded (Figure[2}A). These videos were acquired with resolutions of 600 x 600
and 768 x 768 pixels from iE33, Sonos AcusonsC2000, Epiq 5G, or Epiq 7C
ultrasound machines. Finally, each video was downsampled and resized to a di-
mension of 112 x 112 pixels. Additionally, the database provided the LV at the
End-of-Systole and End-of-Diastole segmentation while also the LVEF and LV
volume were informed [9].

Fig. 2. Data exclusion criteria. A. Doppler mode. B. Abnormal orientation. C. Breath-
ing interference during the first or second cardiac cycle.

Likewise, project 82335 from Minciencias provided an anonymized repository
with 99 cases containing apical-4-chamber echocardiographic videos at a reso-
lution of 1280 x 720 pixels, several sampling rates, and their respective clinical
records. These videos were captured from three different ultrasound machines.
A General Electric’s echocardiography, Vivid I, and Vivid 1Q, with a sampling
frequency of 45 to 60 FPS. The other ultrasound equipment was a PHILLIPS
healthcare echocardiography, AFFINITI 70C with a sampling frequency of 60
FPS.

This local repository consists of actual hospitalized cases from two local hos-
pital centers with a large variety of clinical conditions along with their respec-
tive ejection fraction. These cases represent a large variability of real clinical
scenarios, some cases presenting a severe cardiac condition, with or without con-
comitant pathology, and others with underlying cardiac pathology, but showing
a stable clinical condition. A summary of the database is presented in the Tab.
More information related to the local repository can be found in this link E]

2.5 Evaluation

To prove the presented indicator is more coherent with the degree of cardiac func-
tion deterioration than the ejection fraction two tests were conducted. The first
consisted in constructing a feature space that summarizes the cardiac function.

1 https://gitlab.com/acarrera4/cardiac_functoin_analysis/
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Table 1. Distribution of actual hospitalized cases, divided into severe cardiac pathol-
ogy associated or not with other underlying entity, and cardiac diseases with stable
condition. This database illustrates how inconsistent the LVEF may be in many clin-
ical conditions, being normal in frank cardiac deterioration and abnormal in stable
states.

Severe Cardiac Pathology

Unstable condition Cases|LVEF [%]| Stable condition |[CasesLVEF [%]
Heart failure - Atrial fibrilation 8 21 - 65 Heart failure 2 13 - 46
Myocardial Infarction - Miocardial I.| 14 34 - 67 Coronary Artery D. 7 37 - 65
Heart failure - Stroke 2 52 - 70 Stroke 4 36 - 52
Heart failure - Chagas 2 15 - 27 Mix cardiopathy 2 30 - 51
Heart failure - Lupus 2 55 - 60
Total cases 28 Total cases 15

No Cardiac compromise

Unstable condition Cases|LVEF [%]| Stable condition |Cases|/LVEF [%)]
Venous thrombosis - Angina 4 54 - 65 Hypertensive C. 16 15 - 62
Myocardiopathy - Tachycardia 5 33 - 71 |Valvular heart disease| 9 30 - 63
Valvular cardiopathy - Lupus 1 36 - 78 Right pontic Stroke 2 60 - 65
Hypertensive C. - Pulmonary cor 10 29 - 78 Endocarditis 4 46 - 67
Valvular C. - Bacteria 3 21-59 Myocarditis 2 56 - 59
Total cases 25 Total cases 31

For doing so, a spectral clustering algorithm was applied to a distance matrix
constructed from the magnitude differences of the estimated left chamber dy-
namics from 7,835 cases selected from the EchoNet-dynamic database [9] as well
as the database collected locally. An optimal number of groups that describe the
space feature was obtained by applying the Eigengap heuristic method.

A second test consisted in determining how the 99 collected clinical cases were
distributed with respect to the cluster medoid and compared with the reported
LVEF. For doing so, these cases were divided into three categories after the
Stenveson Classification Score (A, B, C defines the levels of severity) of the
stage of a cardiac failure, when this information was available, and a previous Z-
score normalization was applied to both the Fuclidean distance of the magnitude
and the LVEF and the resultant quantities are plotted.

3 Results

The spectral clustering captures non-linear relations of the magnitude space.
After applying the Eigengap heuristic method, four clusters were obtained. The
results are observed in Fig[3] the left panel showing the spectral embedding where
clusters are differently located within the obtained features space, while the right
panel shows the temporal series of the four cluster medoids. Basically, the four
clusters show similar curves, with a different height for the two diastole moments,
likely due to the motion of the capturing plane which affects the ventricular area
estimation. From this figure one infers that main differences should be observed
at the phase components since some oscillation or peaks, yet they are present
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in the entire set, their main difference is expressed in terms of delays or abrupt
changes in some of them, for instance in cluster 3 whose dynamics is completely
different from the blue curve, cluster 2.

Spectral Clustering Embedding Temporal signal from the medoid cluster

—— Cluster 1
Cluster 2

Cluster 3
Cluster 4

—~ Y ay,~Aa
\\\J

Time - Cardiac cycle

Changes of LV Area [pixels]

LVEF>50
©® 40=LVEF<50
©® LVEF<40

Fig. 3. Spectral embedding of the frequency space at the left and the original temporal
series of the four medoids at the left.

Figure [4] shows the normalized value of the ejection fraction (LVEF) in the
y axis and the presented indicator in the = axis for the four clusters of those
cases for which clinic information was available (99 cases collected from two local
hospitals). Just for analysis purposes, these cases were divided into three cate-
gories after the Stenveson Classification [I] of the stage of cardiac failure when
this information was available. Otherwise, based on the number of associated
pathologies and their degree of severity, cases were assigned to any of the three
categories by the cardiologists coauthoring this publication. Overall, a pattern
is repeated for the four groups, meaning the LVEF is much more spread than
the presented indicator in the z axis. The more populated group is cluster 2,
where the transition between the three categories looks more visible, from left to
right, unlike LVEF where the three groups are quite mixed. Interestingly, when
data are observed from left to right in the more populated cluster, the transi-
tion in cluster 2 starts with cases with pericardial effusion and heart failure of
pulmonary origin (class 2), to cases reported as control (class 1) and ends with
cases of heart failure of ischemic origin. The second more populated cluster was
1, which from left to right showed cases of infectious bacteria, control cases, and
then some arrhythmias like tachycardia-bradycardia and atrial fibrillation. The
number of cases in cluster 3and4 was to low as to observe any pattern.

4 Conclusions

This paper has introduced a new descriptor of the cardiac function which summa-
rizes the frequential phase and magnitude components of the ventricular tem-
poral series of the estimated area in the four-chamber image. The method is
intuitive and fully integrable with the clinic workflow. In a series of cases with
different degrees of pathology and complicated clinical conditions, the method
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Fig. 4. Box plot of the normalized frequency descriptor by Z-score. The cases from the
local repository were labeled in each cluster based on Tab. [T} Blue represents a low
cardiac compromise, pink is moderate, and yellow is several compromises.

demonstrates to capture complex dynamics, improving what is observed with
the ejection fraction for these very same cases.
Additionally, various challenges and limitations can be described as follows:

— A main issue is the variability of the capturing plane: entirely operator-
dependent and highly variable after the particular pathology. Unlike classic
indicators like the ejection fraction, the descriptor herein introduced is much
more robust to this sort of variability by the redundancy of the temporal
series.

— The local database contains a limited number of cases which hardly illus-
trate the large variability of the cardiac disease and the consequent series of
adaptive mechanisms of the cardiac dynamics. However, the descriptor was
able to separate groups with clinic meaning as shown by the small series of
hundred patients.

— The present study compares individual cardiac cycles since cardiologists only
register single cycles rather than longer periods. The resultant characterized
dynamics ignores therefore the intrinsic cardiac variability which is more
important in pathological stages.
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