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Abstract. No studies have formulated endoscopic classification (EG)
of gastric atrophy (GA) as a multi-label classification (MLC) problem,
which requires the simultaneous detection of GA and its gastric sites
during an endoscopic examination. Accurate EG of GA is crucial for as-
sessing the progression of early gastric cancer. However, the strong visual
interference in endoscopic images is caused by various inter-image differ-
ences and subtle intra-image differences, leading to confounding contexts
and hindering the causalities between class-aware features (CAFs) and
multi-label predictions. We propose a multilevel causality learning ap-
proach for multi-label gastric atrophy diagnosis for the first time, to
learn robust causal CAFs by de-confounding multilevel confounders. Our
multilevel causal model is built based on a transformer to construct a
multilevel confounder set and implement a progressive causal interven-
tion (PCI) on it. Specifically, the confounder set is constructed by a
dual token path sampling module that leverages multiple class tokens
and different hidden states of patch tokens to stratify various visual in-
terference. PCI involves attention-based sample-level re-weighting and
uncertainty-guided logit-level modulation. Comparative experiments on
an endoscopic dataset demonstrate the significant improvement of our
model, such as IDA (0.95% on OP, and 0.65% on mAP) and TS-Former
(1.11% on OP, and 1.05% on mAP).

Keywords: Multi-label Classification · Causal Intervention · Gastric
Atrophy Detection.

1 Introduction

No studies have investigated computer-aided endoscopic grading (EG) of gastric
atrophy (GA) according to the Kimura-Takemoto classification (KTc) [7] using a
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Fig. 1. Problem setting and our method. (a) Visual interference in endoscopic images
leads to spurious correlation between image features and labels, which can be de-
confounded by a causal model. (b) Limitation of existing method and (c) advantage of
our multilevel causal model on building confounders to capture the visual interference.

multi-label classification (MLC) approach [4, 9]. EG of GA is crucial for screen-
ing patients with an increased risk of progression to malignancy by detecting
GA and classifying its gastric site while scanning the entire gastric mucosa via
endoscopy. Despite the demonstrated superiority of deep learning-based meth-
ods in GA detection or gastric site classification [1, 21, 8], accurate EG of GA
remains challenging due to strong visual interference during endoscopic exami-
nation. Furthermore, training independent classifiers for each task is expensive
and difficult [23], while MLC holds potential in clinical applications [17, 22].

Although the effectiveness of MLC has been demonstrated [14], the learned
features are prone to stem from spurious correlations among different labels. On
one hand, label correlation methods [24, 2, 19] ignore the true relationship be-
tween features and labels due to the interdependencies among labels [3, 13]. On
the other hand, attention in image region-level [20] or semantic-level [25] may
not always capture meaningful factors for improvement. As it can inadvertently
attend to confounding contexts when training samples are insufficient [10], lead-
ing to incorrect causalities between learned features and predictions. Therefore,
learning a robust class-aware feature (CAF) in MLC is crucial and can enhance
the explainability of the model. This can be addressed by causality theory [15],
which provides a theoretical perspective by studying the inherent relationship
between an initial event (the cause) and a subsequent event (the effect).

However, existing causal intervention methods often construct confounders at
the same feature level, which is insufficient to represent confounding contexts due
to the visual interference in endoscopic images. Intuitively, the graphic difference
interference is caused by the inter-image difference due to various gastric sites
and endoscopic conditions in endoscopic examinations (Fig. 1(a)). Moreover, the
graphic similarity interference in GA detection stems from the subtle intra-image
differences between normal and abnormal mucosa. Therefore, relying solely on
a single level of features may not capture these visual interferences very well,
hindering the inference of causality between CAFs and labels (Fig. 1(b)).
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Fig. 2. Illustration of our multilevel causal model, which is built upon a transformer
to capture multilevel confounding contexts and implement progressive intervention.

A structural causal model (SCM) is constructed for the EG of GA, and a novel
multilevel causality learning approach is proposed to learn the robust causal re-
lationship between CAFs and labels in MLC (Fig. 1(c)). Our multilevel causality
learning enriches confounders with multilevel feature representation and imple-
ments a progressive causal intervention (PCI) (Fig. 2). Building upon this SCM,
our contributions can be summarized as follows: (1) For the first time, a mul-
tilevel causality learning approach for multi-label gastric atrophy diagnosis is
proposed to address the strong visual interference in endoscopic images. (2)
Our multilevel causal model innovatively constructs multilevel confounders to
stratify various confounding contexts and advances causal intervention to de-
rive CAFs that are robust to visual interference. (3) An endoscopic dataset is
collected to study the effectiveness of our multilevel causal model.

2 Multilevel Causality Multi-label Learning

2.1 Causal Inference for Endoscopic Grading of Gastric Atrophy

A causal view of visual interference in EG of GA is formulated by using SCM.
In this SCM, causality among four variables (Fig. 1(a)): image feature X, con-
founder C, class-aware feature Z, and prediction Y are denoted by direct links.
The existence of C introduces interference with the desired causal effect: X → Y ,
resulting in spurious correlations between X and Y : C → X → Z → Y ,
C → Z → Y , and C → X → Y . The way to eliminate the confounding ef-
fect is causal intervention. It cuts off the links from C to X and Z to build a
beneficial causal effect for robust classification: X → Z → Y and is implemented
by a backdoor adjustment with do-calculus [16] by:

P(Y | do(X)) =
∑
c

P(Y | X,C = c)P(C = c)

=
∑
c

∑
z

P(Y | X = x,C = c, Z = z)P(Z | X = x)P(C = c)
(1)



4 X. Cui et al.

P(Y | X,C = c) is the prediction of the classifier trained in possible confounders
c. P(Y | X = x, Z = z, C = c) denotes the classification probability of Z from
X. This process is implemented by sigmoid activated classification of spatial
grouping of X. According to [15], sampling on c can be approximated by sampling
on the observed data (x, y). Instead of sampling C in a fixed feature level to
implement the confounder, a multilevel sampling strategy is proposed to de-
confound visual interference in endoscopic images. To calculate P(Z | X =
x)P(C = c), sample-level re-weighting and logit-level modulation are proposed.
The details will be described in the following two sections.
Summary of Advantage: An SCM clearly illustrates how confounders bias
the MLC model, and how to cut off the confounding path.

2.2 Dual Token Path Sampling For Multilevel Confounder

Our dual token path sampling (DTPS) module captures various confounding
contexts in endoscopy images by leveraging multilevel features from both class-
token and different patch-token paths of a transformer, while multilevel CAFs
are further derived via spatial grouping.
Dual Token Path Sampling: For an image feature F generated from ResNet
[6], a standard transformer is introduced to project it into a set of feature queries
affected by different confounders. F is split into N ×N patches and then trans-
formed into N2 patch tokens Tp ∈ RN2×D, where D is the embedding dimen-
sion. Nc learnable class tokens are designed and transformed into Tc ∈ RNc×D to
model global features along the spatial dimension. Tp and Tc are concatenated
and then added with position embeddings to form input tokens to the trans-
former, which consists of multiple consecutive encoder blocks equipped with
a multi-head self-attention module and a multilayer perceptron module. After
that, image features affected by the confounders can be estimated from class-
token and intermediate hidden states of patch-token paths.
Multilevel CAFs: To derive CAFs, spatial grouping is proposed to cluster pix-
els within an image towards different groups most likely to represent specific
categories by a classifier. In the class-token path, Tc is directly used to formulate
different CAFs represented by Ec. In the patch-token path, each hidden state
form Fp ∈ RN2×D×L is stratified to derive different CAFs by a spatial grouping
module, where L is the number of encoder blocks. For each F k

p , k = 1, 2, · · · , L,
a classifiers fk(·) implemented by a 1 × 1 convolution is utilized to implement
spatial grouping to generate CAFs

{
ekn
}
, where n = 1, 2, · · · , Nc. Specifically,

F k
p is arranged into a 3D tensor Zk ∈ RD×N×N , and the probability of each

pixel belong to label n is calculated by using weight vectors W k
n of fk(·) and a

softmax operator:
Ak

n = softmax(W k
nZk) (2)

where Ak
n ∈ RN×N and

∑
i,j a

i,j
n = 1 for all n. Finally, for each label n, its

corresponding CAF
{
ekn
}

is computed by using An
k to weight average the spatial

features in Zk: ekn = ZkA
k
n. In this way, a set of CAFs Ep =

{
ekn
}L
k=1

concatenate
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with Ec formulate multilevel E ∈ R(L+1)×Nc×D.
Summary of Advantage: Our DTPS is a simple sampling manner to enrich
confounders with different feature levels, while pixels in features are clustered
into coherent groups based on class awareness to derive multilevel CAFs.

2.3 Progressive Causal Intervention

Our PCI progressively incorporates sample-level re-weighting and logit-level mod-
ulation into the classification, enhancing causalities between CAFs and labels.
Because confounders are sampled from different transformer blocks, the status
of each CAFs varies. Moreover, different channels of each CAF attend to differ-
ent label-related regions [26], treating their contribution equally hinders CAF
learning [10]. Based on the multilevel CAFs, attention-based re-weighting and
uncertainty-guided modulation are designed to bias more weight to more crucial
samples under different confounders.
Attention-based Re-weighting. Self-attention is applied to operate the weight-
ing upon different samples in E to emphasize more crucial samples:

E′ = softmax

(
(WqE) (WkE)

T

√
D

)
(WvE) (3)

where Wq, Wk, and Wv are three different linear projections to map CAF se-
quences into a common subspace for similarity measure.
Uncertainty-guided Modulation. To obtain the final prediction, each CAF
is fed into a classifier, then logits of the class-token sample are modulated by all
samples to obtain the final logit for that class. Specifically, for patch-token sam-
ples in E′, its classifier shares the same learnable weights with fk(·) to generate
the prediction Op. The class token prediction Oc is calculated by an identity
mapping of from class-token sample in E′. The variance along the L + 1 di-
mension of O = [Op,Oc] ∈ RC×D×(L+1) that consists of multiple outputs from
multilevel CAFs is calculated. Such variance is denoted by a tensor u ∈ RC×D

and reflects the uncertainty for every class logit across multiple samples. It is
then converted into certainty by using 1− tanh(u) to modulate logits from Oc:

O′
c = Oc ⊗ (1− tanh(u)) (4)

where O′
c is the final prediction after causal intervention, which is then put into

the Binary Cross-Entropy Loss with sigmoid to guide the training process.
Summary of Advantage: PCI novelly implements backdoor adjustment at
sample-level and logit-level by incorporating attention-based re-weighting and
uncertainty-guided modulation, respectively.

3 Experiment

3.1 Dataset and Data Preprocessing

An endoscopy dataset consisting of 4574 endoscopy images from 3840 patients
at ∗ Hospital was collected with approval from the Institutional Review Board
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with a waiver of informed consent. 40.66% of the images represents gastric atro-
phy (GA), while 59.34% depicts non-GA cases. The distribution across different
gastric sites is 1069:1145:370:704:395:891 refers to C1, C2, C3, O1, O2, and O3.
Training, validation, and test sets are divided into 3658:455:461, respectively.
Data preprocessing is performed on our datasets. In detail, the combination
of random rotation, random translation, and random scaling is used first for im-
age augmentation. The augmented images are resized to 256× 256 and cropped
to 224× 224 centered on the image.

3.2 Implementation details

ResNet-50+ViT-B_16 [18] is used as a backbone, which integrates ResNet-50
and a transformer that contains 12 transformer blocks with 12 multi-attention
heads and an embedding dimension of 768. Adam optimizer with an initial learn-
ing rate of 1e − 4 is used for a batch size of 24. Our model was trained for 150
epochs, and the best performance on validation set was selected for testing. All
our codes were implemented in Pytorch on an NVIDIA Tesla A40 GPU. Evalua-
tion metrics included mean average precision (mAP), average per-class precision
(CP), recall (CR), and F1 score (CF1), and average overall precision (OP), recall
(OR), and F1 score (OF1). Our dataset and code are available on GitHub 6.

3.3 Comparison with State-of-the-art Methods

We compare our methods with recent SOTA multi-label classification-based
methods: TA-DCL [23], TS-Former [27], C-Tran [9], and Q2L [12]). In addition,
two causal inference-based methods, (CCD [11] and IDA [10]), are also included
for comparison. TA-DCL is a triplet attention network designed to learn label
embeddings. In our task, we only use intra-pool contrastive and denote it as
"TA-DCL" in Table 1. TS-Former is a two-stream transformer learning frame-
work that incorporates spatial and semantic features via a multi-shot attention
mechanism. C-Tran consists of a transformer encoder trained to predict target
labels based on an input set of masked labels and visual features. Q2L leverages
transformer decoders to query the existence of a class label. CCD presents a
novel causal context debiasing module to pursue the direct effect of an instance,
while IDA adopts two attention layers with multiple sampling interventions to
compensate attention against the confounder context.

As shown in Table 1, our method consistently outperforms others under fair
experimental settings. Notably, because only two labels are required for each
input in this task, C-Tran achieves the highest CP of 95.34% with masked labels.
IDA obtains the highest OP of 94.92%, highlighting the effectiveness of attention
layers with multiple sampling interventions. Both CCD and IDA incorporate
causal inference and achieve the second-best performance across all metrics,
implying the efficacy of causal inference approach. Our method advances causal
inference by incorporating multilevel feature and progressive causal intervention,
6 https://github.com/rabbittsui/Multilevel-Causal
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Table 1. Experiments results demonstrated the effectiveness of our method.

Models Venue CP CR CF1 OP OR OF1 mAP
IDA ICLR’2023 94.53 90.75 92.11 94.92 94.47 94.70 96.91

TA-DCL∗ MedIA’2023 87.02 86.05 86.06 87.10 90.68 88.85 92.58
TS-Former ACM MM’2022 92.11 90.07 90.91 94.46 94.31 94.39 96.51

CCD CVPR’2022 92.81 92.67 92.47 93.37 94.73 94.54 97.13
C-Tran CVPR’2021 95.34 73.98 79.43 93.41 85.15 89.09 93.56
Q2L arXiv’2021 85.88 93.80 89.23 89.39 94.47 91.86 96.39
Ours 94.22 91.89 92.65 94.23 95.42 94.82 97.56

Fig. 3. (a) Some activation maps from different transformer encoder blocks are consis-
tent with GA regoins (white annotation), while some are background. (b) The influence
of sampling numbers K on mAP and precision for each class demonstrates that the
best performance is achieved when using all multilevel features.

achieving the highest mAP of 97.56%, CF1 of 92.65%, OR of 95.42%, and OF1 of
94.82%. These results demonstrate the effectiveness of our approach in enhancing
robust class-aware features for different labels.

To intuitively demonstrate the effectiveness of our method, for each multilevel
sampling, we visualize activation maps of each classifier fk(·) that correctly
predicts GA using GradCAM [5]. To study the explainability of activation map,
region of GA is also given in Fig. 3(a). It is observed that attention map in
different layers attends to different things: some for the GA region, and some
for the background. By assigning different attention weights to these regions,
accurate activation maps can be enhanced to facilitate the learning of CAF.

3.4 Ablation study

We conduct ablation studies on our multilevel causal model from 2 aspects: 1)
components analysis of our method, and 2) varying the number of multilevel
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Table 2. Ablation study demonstrated the effectiveness of key components.

Backbone Sample Attention Modulate CP CR CF1 OP OR OF1 mAP
✓ 86.57 87.50 86.90 88.13 91.47 89.77 93.66
✓ ✓ 93.31 89.29 90.81 94.39 93.05 93.72 96.86

✓ ✓ 93.09 83.79 86.31 92.12 88.63 90.34 96.58
✓ ✓ ✓ 95.10 89.83 91.91 94.31 94.31 94.31 97.93
✓ ✓ ✓ 92.85 92.01 92.25 94.21 95.10 94.69 97.27
✓ ✓ ✓ ✓ 94.22 91.89 92.65 94.23 95.42 94.82 97.56

features.
Effects of Key Components. To evaluate the impact of our multilevel sam-
pling, attention, and modulation on causal intervention, ablation experiments
are conducted by splitting and reconstructing our model with different com-
ponents according to the default setting. "Backbone", "Sample", "Attention",
and "Modulate" in Table 2 indicate multi-class token transformer, multilevel
sampling, self-attention, and uncertainty-guided modulation, respectively. The
symbols "✓" and " " indicate the application or removal of components in our
method. A blank "Backbone" in the third row denotes applying a single class
token in Transformer. It is observed that using only class-token or patch-token
gets limited improvement due to their respective limitation. However, combin-
ing them together improves the performance, demonstrating the effectiveness of
our multilevel feature sampling. Furthermore, we investigate the effectiveness of
attention and modulation on causal intervention in the last four rows of Table
2. It is obvious that either attention or modulation improves the performance
across all metrics, while uncertainty-guided modulation yields the highest mAP.
Performance is further improved when both attention and modulation are used,
indicating the complementary of our key components.
Effects of Sampling Levels. We further investigate the effects of multilevel
features by varying numbers of intermediate features in the transformer. For a
fair comparison, we gradually incorporate features of shallower blocks of trans-
former into causal intervention, and the results of mAP and precision for each
class are shown in Fig. 3(b). It is observed that mAP fluctuates with the in-
corporation of features from different transformer blocks, especially dropping
features from the first three transformer blocks achieves the lowest. We conclude
that different blocks capture different spatial regions, as demonstrated in Fig.
3(a). Therefore, such differences between focused regions can generate different
causal-effected CAFs, leading to different predictions for each label.

4 Conclusion

To the best of our knowledge, our multilevel causal model is the first to achieve
multi-label gastric atrophy diagnosis. We formulate the SCM to illustrate the
confounding effect of strong visual interference in endoscopic images and pro-
pose a causal intervention strategy. Our model effectively captures multilevel
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confounder contexts by a dual token path sampling module based on a trans-
former. To mitigate interference, a progressive causal intervention strategy in-
volving sample-level reweighting and logit-level modulation is proposed to re-
inforce the correct causal relationship between images and labels. Comparative
analyses with SOTA methods and ablation studies conducted on our collected
GA-related endoscopy dataset demonstrate the effectiveness of our model.
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