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Abstract. The B-mode ultrasound based computer-aided diagnosis (CAD) has 
demonstrated its effectiveness for diagnosis of Developmental Dysplasia of the 
Hip (DDH) in infants. However, due to effect of speckle noise in ultrasound im-
ages, it is still a challenge task to accurately detect hip landmarks. In this work, 
we propose a novel hip landmark detection model by integrating the Topological 
GCN (TGCN) with an Improved Conformer (TGCN-ICF) into a unified frame-
work to improve detection performance. The TGCN-ICF includes two subnet-
works: an Improved Conformer (ICF) subnetwork to generate heatmaps and a 
TGCN subnetwork to additionally refine landmark detection. This TGCN can 
effectively improve detection accuracy with the guidance of class labels. Moreo-
ver, a Mutual Modulation Fusion (MMF) module is developed for deeply ex-
changing and fusing the features extracted from the U-Net and Transformer 
branches in ICF. The experimental results on the real DDH dataset demonstrate 
that the proposed TGCN-ICF outperforms all the compared algorithms. 

Keywords: Developmental dysplasia of the hip, B-mode ultrasound images, 
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1 Introduction 

Developmental dysplasia of the hip (DDH) is one of the most common orthopedic dis-
orders in infants, which may lead to acetabular dysplasia, hip instability, and hip dislo-
cation [1]. Accurate diagnosis of DDH in the early stagy is crucial for the following 
treatment [2]. In clinical practice, B-mode Ultrasound (BUS) imaging is commonly 
used for diagnosis of DDH in infants within 6 months [3]. The Graf’s method is com-
monly used for diagnosing DDH by measuring the α and β angles (Normal if α > 60˚ 
and β < 77˚) as shown in Fig. 1(a) [4]. However, this method is susceptible to the sub-
jective expertise of sonologists. 
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Fig. 1. Illustration of hip BUS images. 

In recent years, deep learning (DL) has gained its reputation in the field of BUS-
based computer-aided diagnosis (CAD) for DDH [5-8]. Since the angle measurement 
can be simply determined by some critical hip landmarks as shown in Fig. 1(b) and (c), 
some pioneering works have explored the feasibility of CAD based on hip landmark 
detection [9, 10]. However, accurate detection of key hip landmarks is still a challeng-
ing task due to the effect of speckle noise in ultrasound images  [11]. 

It is worth noting that the hip landmarks are located across multiple areas of the BUS 
images (as shown in Fig. 1(b)), and therefore, it is necessary to capture both the local 
and global information to improve detection accuracy. Since the Convolutional Neural 
Network (CNN) mainly focuses on extracting local features [12], and the Transformer 
architecture can well learn global representations [13], the hybrid models by combining 
CNN and Transformer then indicate their superior performance for the point detection 
task [14,15]. As a classical hybrid model, Conformer has shown its effectiveness in 
many computer vision tasks [16], and has the feasibility for hip landmark detection. 
However, the feature fusion strategy in the Conformer is very simple, and cannot fully 
fuse the local and global features extracted from the CNN and Transformer branches, 
which will affect the detection performance to a certain extend. 

On the other hand, as shown in Fig. 1(b), the key landmarks have their inherent spa-
tial relations in the hip BUS images. For example, the red landmarks (landmark 1 and 
2) are collinear, which serve as the key points to form the base  line (𝐿𝐵 in Fig. 1(a)) 
according to the Graf’s method [4]. These special spatial relations between different 
landmarks can provide important spatial topology knowledge to help enhance the de-
tection accuracy. However, existing hip landmark detection algorithms do not pay close 
attention to this important prior information, and it is also difficult to model and utilize 
it. Since the Graph Convolutional Network (GCN) can effectively integrate the topol-
ogy information into a graph [17, 18], it provides a feasible approach to capture the 
spatial relations of landmarks for further improving detection performance. 

In this work, we propose a novel hip landmark detection model by integrating the 
Topological GCN (TGCN) with an Improved Conformer (TGCN-ICF) into a unified 
framework to improve detection performance. The TGCN-ICF includes two subnet-
works: an Improved Conformer (ICF) subnetwork to generate the related heatmaps and 
a TGCN subnetwork to refine landmark detection. This TGCN can effectively improve 
detection accuracy with the guidance of class labels. Moreover, a Mutual Modulation 
Fusion (MMF) is developed for deeply exchanging and fusing features extracted from 
the U-Net and Transformer branches in ICF. The experimental results on a real DDH 
BUS dataset indicate the effectiveness of the proposed TGCN-ICF. 
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The main contributions of this work are summarized as follows: 
1) A novel unified framework, named TGCN-ICF is proposed for hip landmark detec-

tion from BUS images. Different from the conventional landmark detection models 
that directly detect points based on the generated heatmaps, the additional TGCN 
subnetwork in TGCN-ICF further refines the heatmaps generated from the ICF sub-
network by learning the spatial topological relations among landmarks with the guid-
ance of class labels, so as to effectively improve detection accuracy. 

2) A new MMF model is developed in the ICF subnetwork to fully exchange and fuse 
the local and global features. In MMF, the local features and global features are op-
timized by referring to each other, allowing each branch to learn features highly re-
lated to itself but missing. In other words, MMF can adaptively suppress the differ-
ence patterns of local and global features to achieve fully feature fusion. 

2 Method 

The overall framework of the proposed TGCN-ICF is illustrated in Fig. 2. The TGCN-
ICF consists of an ICF subnetwork and a TGCN subnetwork with the following training 
pipeline. 
1) A hip BUS image and the corresponding patches are first fed into the ICF subnet-

work to generate heatmaps.  
2) The generated heatmaps are then fed into the TGCN subnetwork for further refine-

ment with the guidance of class labels. 
 

 
Fig. 2. Overview of the proposed Topological GCN with Improved Conformer (TGCN-ICF). 
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2.1 Improved Conformer Subnetwork 

In the ICF subnetwork, since U-Net is a commonly used encoder-decoder architecture 
for landmark detection, we replace the conventional CNN branch in the original Con-
former with U-Net. Thus, the U-Net and Transformer branches can effectively capture 
both the local and global information in hip BUS images. Meanwhile, inspired by [19] 
and [20], a MMF module is developed to deeply exchange and fuse the features ex-
tracted from these two branches. The MMF module can adaptively update and optimize 
each branch’s information by referring to another branch, achieving highly effective 
fusion of local and global features. 

As shown in Fig. 2 (b), given two feature maps 𝑓𝑙 ∈ ℝℎ×𝑤×𝑐 and 𝑓𝑔 ∈ ℝℎ×𝑤×𝑐 that 
are extracted from the U-Net and Transformer, we specifically design two synchronous 
fusion routes: Local-to-Global Fusion and Global-to-Local Fusion. 

Local-to-Global Fusion. In this fusion route, the 𝑓𝑙  is updated by 𝑓𝑔 in the pixel level. 
Specifically, a filter 𝐹𝑙𝑔(⋅) is learned to update the local neighbor pixels (denoted as 
𝐿(𝑖,𝑗)

𝑛2 ) in an 𝑛 × 𝑛 neighborhood by the corresponding center pixel 𝐺(𝑖,𝑗) in 𝑓𝑔. The fil-
ter weight is defined as follows: 

𝝎(𝑖,𝑗)
0 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∑ (𝐺(𝑖,𝑗)⨂𝐿(𝑖,𝑗)

𝑛2
)𝑐 )                                 (1) 

where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) represents the normalized exponential function, ∑ (⋅)𝑐  denotes the 
summation along the channel dimension, and ⨂ is the matrix product. Therefore, the 
updated neighbor pixels can be calculated by: 

𝐿(𝑖,𝑗)
𝑛2 ′

= 𝐹𝑙𝑔[𝐿(𝑖,𝑗)
𝑛2

] = ∑ (𝐿(𝑖,𝑗)
𝑛2

⨂𝝎(𝑖,𝑗)
0

𝑛2 )                             (2) 

where 𝐿(𝑖,𝑗)
𝑛2 ′

 denotes the updated local pixels in the 𝑛 × 𝑛 neighborhood, and ∑ (𝑛2 ⋅) 
represents the summation along the neighborhood spatial dimension. In this way, all 
pixels in 𝑓𝑙  will be updated by targeting the counterpart pixels in 𝑓𝑔, and then we can 
obtain the fused local-to-global information 𝑓𝑙

′. 

Global-to-Local Fusion. Similarly, the 𝑓𝑔 is updated by 𝑓𝑙  in the pixel level. Specifi-
cally, a filter 𝐹𝑔𝑙(⋅) is learned to update the global neighbor pixels (denoted as 𝐺(𝑖,𝑗)

𝑛2 ) 
by the corresponding center pixel 𝐿(𝑖,𝑗) in 𝑓𝑙 . The weight of 𝐹𝑔𝑙(⋅) is calculated as: 

𝝎(𝑖,𝑗)
1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∑ (𝐿(𝑖,𝑗)⨂𝐺(𝑖,𝑗)

𝑛2
)𝑐 )                                (3) 

Thus, the updated 𝐺(𝑖,𝑗)
𝑛2 ′

 can be obtained by: 

𝐺(𝑖,𝑗)
𝑛2 ′

= 𝐹𝑔𝑙[𝐺(𝑖,𝑗)
𝑛2

] = ∑ (𝐺(𝑖,𝑗)
𝑛2

⨂𝝎(𝑖,𝑗)
1

𝑛2 )                             (4) 
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Therefore, we can get the fused information 𝑓𝑔
′ by updating all pixels in 𝑓𝑔. Finally, 

the fused features 𝑓𝑙
′  and 𝑓𝑔

′ will further be added to obtain the final fused features 𝑓𝑚: 

𝑓𝑚 = 𝑓𝑙
′ ⨁ 𝑓𝑔

′                                                      (5) 

where ⨁ represents the concatenation along the channel dimension. In this way, the 
local and global features can be fully exchanged and fused for subsequent detection. 

2.2 TGCN Subnetwork 

The topological interaction of different landmarks is important and reliable prior infor-
mation for improving detection performance. However, existing landmark detection-
based algorithms ignore the topological information hidden in hip BUS images. Since 
we can get the class label (normal or abnormal) of each BUS image, we then propose a 
TGCN subnetwork to effectively learn topology-aware graph representations with the 
guidance of class labels. It can further refine the generated heatmaps to improve detec-
tion accuracy, because the label information can further implicitly provide an additional 
constraint to correct the detected landmarks. 
 

 
Fig. 3. The principle of the adjacency matrix construction. 

Landmark Topological Relations. As shown in Fig. 3(a), we model three groups of 
topological relationships from all the hip landmarks inspired by the Graf’s method [4]. 
That is, three critical lines of the related structures are formed by 𝐿1 and 𝐿2, 𝐿3 and 𝐿4, 
𝐿5 and 𝐿6, respectively, in Fig. 1(c). In order to make full use of this valuable topolog-
ical information, we construct a graph for graph representation learning. 

A graph is denoted as 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 represent the nodes and a set of 
edges in the graph, respectively. Since each heatmap generated by the ICF subnetwork 
represents a corresponding landmark, we take each heatmap as a node. Therefore, a  
graph can be denoted as a feature matrix 𝐺𝑓 ∈ ℝ𝑘×𝑑, which has 𝑘 nodes, and each node 
has a 𝑑-dimensional feature vector. In this work, we set 𝑘 = 6, since the goal of this 
task is to extract 6 landmarks, and 𝑑 = ℎ × 𝑤 represents the size of each heatmap. 

Adjacency Matrix Construction. As shown in Fig. 3 (b), we construct the adjacency 
matrix 𝐴𝑖,𝑗 ∈ ℝ𝑘×𝑘 based on the above mentioned three groups of topological relations. 

Specifically, the adjacency matrix can be denoted as follows: 
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𝐴𝑖,𝑗 = {
1,            (𝑣𝑖,𝑣𝑗) ∈ 𝐸

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                       (6) 

where (𝑣𝑖, 𝑣𝑗) denotes an edge. For example, since 𝐿1 and 𝐿2 are collinear, we define 
𝐴1,2 = 𝐴2,1 = 1. Thus, six edges of the graph can be constructed from the three groups 
of hip landmark topological relations. In this way, the valuable topology information 
can be encoded into an adjacency matrix for further learning graph representations. 

After obtaining  𝐺𝑓 ∈ ℝ𝑘×𝑑  and 𝐴𝑖,𝑗 ∈ ℝ𝑘×𝑘, they are sent into a muti-layer GCN 
[21]. The operation can be denoted as follows: 

𝐺𝑓
′ = 𝜎(𝐷̃−

1

2𝐴̃𝐷̃−
1

2𝐺𝑓𝑾(𝑙))                                          (7) 

where 𝐺𝑓
′ ∈ ℝ𝑘×𝑑, 𝜎(⋅) denotes an activation function, 𝐷̃ is the degree matrix of 𝐴̃, 

𝐴̃ = 𝐴𝑖,𝑗 + 𝐼𝑁, 𝐼𝑁 is the identify matrix, and 𝑾(𝑙) is a trainable weight matrix. The 
graph representations are then fed into the liner projections to obtain the final output: 

𝑦𝐺𝐶𝑁 = (𝐺𝑓
′𝑾0)𝑾1                                               (8) 

where 𝑾0 ∈ ℝ𝑑𝑚×𝑑 and 𝑾1 ∈ ℝ𝑑𝑐×𝑑𝑚 are the weight matrix of linear projection, 𝑑𝑚 
and 𝑑𝑐 represent the middle dimensionality and final classes number, respectively. 

2.3 Loss Function 

As shown in Fig. 2, TGCN-ICF is trained by two loss functions that consists of the 
𝐿𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 and 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦. Specifically, the former is calculated by the Mean Square Er-
ror (MSE) loss between the ground truth heatmaps and predicted heatmaps, and the 
latter is evaluated by the Binary Cross Entropy (BCE) loss between ground truth labels 
and predicted classes. The total loss function 𝐿 is calculated as: 

𝐿 =  𝐿𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 + 𝜆 ∗ 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦                                    (9) 

where 𝜆 is a hyperparameter used to adjust the proportion of the two losses. 

3 Experiments and Results 

3.1 Datasets 

To evaluate the effectiveness of TGCN-ICF, we conducted experiments on a real world 
DDH dataset. This dataset includes 500 hip ultrasound images (458 normal subjects 
and 42 abnormal subjects) from 294 infants, which were captured by the LOGIQ E9 
ultrasound scanner (GE HealthCare, Milwaukee, WI). Notably, all landmarks were 
marked by experienced sonologists. 

3.2 Experiment Setup 

To evaluate the performance of the proposed TGCN-ICF, we compared it with the fol-
lowing algorithms: 
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1) U-Net [22]: The classical U-Net model was applied for landmark detection. 
2) DM-ResNet [9]: It was specially proposed model for hip landmark detection task, 

which adopted a simple ResNet as the backbone and presented a novel dependency 
mining module to enhance feature representation. 

3) Conformer [16]: It was the original Conformer model but with the U-Net instead of 
the CNN branch, which was compared as a baseline. 

4) FAT-Net [23]: This model was a representative dual-branch network that utilized 
the CNNs and Transformer as a dual encoder with three feature adaptation modules. 

5) DA-TransUNet [24]: This model was a newly proposed U-shape architecture, which 
utilized Transformers and dual attention blocks to integrate both global and local 
features together with the image-specific positional and channel features. 
We also conducted an ablation experiment to further evaluate the effectiveness of 

the proposed MMF and TGCN: 
1) TGCN-ICF without MMF (TGCN-ICF w/o MMF): This variant used the conven-

tional concatenation strategy instead of MMF to fuse the features of U-Net and 
Transformer branches in TGCN-ICF. 

2) TGCN-ICF without TGCN (TGCN-ICF w/o TGCN): This variant removed the pro-
posed TGCN subnetwork, and then directly applied the improved Conformer sub-
network for detecting hip landmarks. 
We performed the five-fold cross-validation to evaluate the performance of all the 

algorithms. The commonly used mean radial error (MRE) and successful detection rate 
(SDR) were adopted as the evaluation indices [9]. All the results were presented in the 
format of mean ± SD (standard deviation). 

3.3 Implementation Details 

In our implementations, the Random Horizontal Flip was utilized as a data augmenta-
tion operation. The model was trained by an Adam optimizer with an initial leaning rate 
of 1e-4. Moreover, the TGCN-ICF was trained for 100 epochs with a batch size of 2. 
All the algorithms were implemented by PyTorch with a GTX 3090 GPU. 

3.4 Experimental Results 

Fig. 4 shows the visualization results of hip landmark detection by different algorithms. 
The red dots and green dots represent the positions of ground truth landmarks and pre-
dicted landmarks, respectively. It can be found that the proposed TGCN-ICF achieves 
the best detection accuracy compared to other algorithms. Moreover, when removing 
the MMF or TGCN, the predicted landmarks exhibit a deviation from the ground truth 
landmarks compared with the proposed TGCN-ICF, which suggests the effectiveness 
of proposed MMF and TGCN, respectively. 
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Fig. 4. Visual comparison of different landmark detection algorithms. 

Table 1 gives the quantitative results of different algorithms. It can be observed that 
the proposed TGCN-ICF outperforms all the compared algorithms with the best MRE 
of 0.4364±0.0388mm and three SDRs of 72.33±1.19% (0.5mm), 94.73±1.23% 
(1.0mm), and 98.47±1.42% (1.5mm), respectively. Compared to others, TGCN-ICF 
decreases at least 0.0087mm (approximately 1.95%) on MRE, and it also improves at 
least 1.83%, 0.53%, and 0.17% on the three SDRs, respectively. These superior results 
demonstrate the effectiveness of TGCN-ICF for detecting hip landmarks. 

Table 1. Quantitative results of different algorithms for hip landmark detection. 

Method MRE (mm) ↓ 
SDR (%) ↑ 

0.5mm 1.0mm 1.5mm 
U-Net [22] 0.5147±0.0349 64.80±2.81 92.17±0.72 97.40±1.37 
DM-ResNet [9] 0.5057±0.0468 66.43±2.56 92.27±1.14 97.37±1.18 
Conformer [16] 0.4657±0.0314 67.93±2.81 93.53±0.72 98.30±1.37 
FAT-Net [23] 0.4451±0.0446 70.50±1.80 94.20±1.12 98.30±1.17 
DA-TransUNet [24] 0.4537±0.0376 70.26±0.62 94.10±1.08 97.80±1.39 
TGCN-ICF (Ours) 0.4364±0.0388 72.33±1.19 94.73±1.23 98.47±1.42 

Table 2 shows the quantitative results on the ablation study. When employing the 
traditional concatenation strategy for fusion, the TGCN-ICF w/o MMF exhibits an in-
crease of 0.0079mm (about 1.78%) on MRE, and reductions of 0.96%, 0.70%, and 
0.34% on SDRs, compared with the TGCN-ICF. It suggests the effectiveness of MMF 
module in exchanging and fusing features from U-Net and Transformer branches. In 
comparison to TGCN-ICF, the variant TGCN-ICF w/o TGCN increases 0.0101mm 
(approximately 2.26%) on MRE, and reduces 1.40%, 0.56%, and 0.10% on three SDRs, 
respectively. These results prove the importance of the TGCN to learn topology graph 
representation for enhancing the hip landmark detection performance. Moreover, both 
TGCN-ICF w/o MMF and TGCN-ICF w/o TGCN outperform the Conformer baseline. 
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These superior results once again indicate the effectiveness of the proposed MMF mod-
ule and TGCN subnetwork. 

Table 2. Quantitative results of ablation study for hip landmark detection. 

Method MRE (mm) ↓ 
SDR (%) ↑ 

0.5mm 1.0mm 1.5mm 
Conformer (Baseline) 0.4657±0.0314 67.93±2.81 93.53±0.72 98.30±1.37 
TGCN-ICF w/o MMF 0.4443±0.0392 71.37±1.28 94.03±1.23 98.13±1.24 
TGCN-ICF w/o TGCN 0.4465±0.0431 70.93±1.81 94.17±1.04 98.37±1.47 
TGCN-ICF (Ours) 0.4364±0.0388 72.33±1.19 94.73±1.23 98.47±1.42 

4 Conclusion 
In conclusion, we propose a novel TGCN-ICF for landmark detection within hip BUS 
images. The TGCN-ICF can learn valuable topology graph representation with the 
guidance of class label to improve landmark detection. Moreover, a new MMF module 
is developed for effectively exchanging features between two branches in ICF subnet-
work. The experimental results show the effectiveness of the proposed TGCN-ICF, 
suggesting its potential application for the CAD of DDH. 
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