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Abstract. Deep Neural Networks (DNNs) exhibit exceptional perfor-
mance in various tasks; however, their susceptibility to miscalibration
poses challenges in healthcare applications, impacting reliability and
trustworthiness. Label smoothing, which prefers soft targets based on
uniform distribution over labels, is a widely used strategy to improve
model calibration. We propose an improved strategy, Label Smooth-
ing Plus (LS+), which uses class-specific prior that is estimated from
validation set to account for current model calibration level. We eval-
uate the effectiveness of our approach by comparing it with state-of-
the-art methods on three benchmark medical imaging datasets, using
two different architectures and several performance and calibration met-
rics for the classification task. Experimental results show notable re-
duction in calibration error metrics with nominal improvement in per-
formance compared to other approaches, suggesting that our proposed
method provides more reliable prediction probabilities. Code is available
at https://github.com/abhisheksambyal/lsplus.

Keywords: Calibration · Label smoothing plus · Medical imaging ·
Deep neural networks · Reliability.

1 Introduction

Deep neural networks (DNNs) have demonstrated outstanding performance across
various medical image tasks, including classification, segmentation, and detec-
tion [11]. However, modern DNNs are prone to miscalibration, compromising the
reliability and trustworthiness of their predictions – critical factors in healthcare
applications [10]. Therefore, addressing the issue of miscalibration and enhancing
model calibration is of utmost importance.

Various approaches including data augmentation [24], ensemble [12], label
smoothing [16, 23], focal loss [15], entropy-based regularization and feedback
calibration during training [13, 21], have been proposed to mitigate DNN mis-
calibration. While some of these approaches involve varying the inputs to the
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DNN [24], others focus on changing the true label distribution [17, 29]. Studies
have demonstrated the effectiveness of smoothing true labels during training for
improving calibration [16]. Probabilities from DNNs serve as confidence indica-
tors for predictions; High probabilities signify stronger belief in a predicted class,
crucial in fields like medical diagnosis. However, interpreting the DNN results
is incomplete without taking into account the model calibration [9,22]. Calibra-
tion ensures that assigned probabilities accurately reflect the true likelihood of
events. Without proper calibration, interpretations based solely on probabilities
may be misleading or unreliable.
Contribution. Miscalibration [6] is defined as the disparity between the true
confidence (accuracy) and the predicted confidence (output probability). Achiev-
ing perfect calibration entails bringing the predicted confidence score close to
accuracy. To address this, we propose Label Smoothing Plus (LS+) a novel
and simple extension to label smoothing that substitutes the hard labels with
informed smoothened versions computed from the validation set. The contribu-
tions of the paper are outlined as follows:

1. We introduce a simple yet effective approach to enhance model calibration by
altering the true label distribution with a surrogate distribution computed
from the class-wise accuracy on the validation set.

2. Our proposed method improves calibration with better or on par-performance
when compared to other popular approaches on three medical imaging datasets.

3. Using retention curves and density plots of correct and incorrect predictions,
we observed that our method provides reliable and interpretable scores for
model reject/second opinion, which is essential for safety-critical applica-
tions.

2 Related Work

Post-hoc calibration — Use a hold-out data set (calibration/validation set) to
calibrate the confidence scores of a neural network. Several well-studied calibra-
tion methods include Platt scaling [20], isotonic regression [28], and temperature
scaling (TS) [6]. Weight scaling [5] is an alternative version of TS for medical
imaging tasks that explicitly optimizes the ECE measure to improve calibration.
Additionally, class-distribution-aware vectors [8] for TS and label smoothing are
used to address class-wise overconfidence. Meta-calibration [3] proposes differ-
entiable ECE-driven calibration to obtain well-calibrated and highly accurate
models.
Train-time calibration — An alternative approach that directly generates
calibrated DNN models. Explicit confidence penalty (ECP) [19] leverages the
entropy of the predicted distribution to regularize the loss function. Both Label
smoothing (LS) [16, 23] and Focal loss (FL) [15] implicitly regulate the net-
work output probabilities, encouraging their distribution to closely resemble the
uniform distribution. Furthermore, auxiliary loss functions in conjunction with
negative log-likelihood (NLL) are used to improve calibration. The difference
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between Confidence and Accuracy (DCA) [14] serves as an auxiliary loss, penal-
izing the model when the cross-entropy loss is reduced but the accuracy remains
unchanged. Multi-class Difference in Confidence and Accuracy [7] broadens the
scope of DCA by considering the calibration of every class, not solely the top-
predicted class.
Our current work proposes a more informed strategy to enhance model cali-
bration; the alignment of predicted probabilities (confidence) with accuracy is
achieved by incorporating class specific priors derived from a separate validation
set to account for current calibration level of the model.

3 Methodology

3.1 Preliminaries

Consider a multi-class classification problem comprising of K classes. Let p̂ =
[p̂1, . . . , p̂K ] and y = [y1, . . . , yK ] be the predicted class distribution (confidence
scores) of a deep neural network (DNN) and the ground truth one hot label
encoding for an instance x respectively.
Calibration — A well-calibrated classifier generates confidence scores that align
with the actual frequency of correct predictions. Formally, we can define calibra-
tion for a perfectly calibrated model for all classes as, P(y = y∗|p̂[y] = p̂) = p̂,
where, y ∈ argmaxk yk, y∗ ∈ {1, · · · ,K}, p̂[y] is the confidence that sample x
belongs to class y. [7]
Hard Labelling (HL) — DNN is conventionally trained using only the cross en-
tropy (CE) loss defined as CE(y, p̂) = −

∑
k yk log p̂k, which reduces to log p̂k if

x is labeled k. Minimizing CE loss is equivalent to maximizing the log-likelihood
of the correct label. Often, the optimization is continued until p̂k is very close
to yk. As a result the DNN may suffer from over-fitting causing over confident
predictions, leading to poor generalization and miscalibration.
Label Smoothing (LS) — An approach to mitigate miscalibration is to replace
the one-hot encoded (hard) label vector with a smoothened (soft) label vector
y′ = (1 − α)y + αu, where u is a fixed distribution (typically uniform). Thus,
label smoothing strategy involves minimizing LLS defined as

LLS = H(y′, p̂) = −
K∑

k=1

y′k log p̂k = (1− α) CE(y, p̂) + α CE(u, p̂) (1)

As the CE(u, p̂) term penalizes the deviation between prediction (p̂) and prior
(u) distributions, it can be expressed using Kullback-Leibler (KL) divergence:
CE(u, p̂) = DKL(u, p̂) + H(u). As H(u), the entropy of u, is a constant, the
label smoothing cost function simplifies to [23]:

LLS = (1− α) CE(y, p̂) + α DKL(u, p̂) (2)
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Algorithm 1 Pseudocode of LS+
1: Input: A training dataset DT = {(xi, yi)}i=1,··· ,N , a validation dataset DV , num-

ber of classes K, number of training epochs T , pre-trained model M
2: Class-wise accuracy vector: Vacc = M(DV), where Vacc ∈ RK and each component

of the vector corresponds to the accuracy associated with the class k ∈ K
3: Compute new, class-specific label distribution set {v1, . . . ,vK} using Eqn (3)
4: Minimize LLS+ over training data using the new distribution computed from DV
5: for t = 0 to T − 1 do
6: For each training instance i that belongs to class k, choose the corresponding

informed prior vk

7: LLS+ = (1− α) · CE(y, p̂) + α ·DKL(vk, p̂)
8: end for

3.2 Label Smoothing Plus (LS+)

There are two drawbacks with vanilla label smoothing. Firstly, the approach
does not take into account the DNN’s current calibration level. As a result,
forcible application of label smoothing to an already well-calibrated DNN may
worsen its calibration. Secondly, the uniform prior does not take into account
class-wise calibration levels (poorly and well-calibrated classes are treated alike).
We propose Label Smoothing Plus (LS+) that addresses these two drawbacks in
one go. LS+ replaces the uniform prior u, with an informed class specific prior
vk = [vk1 , . . . , v

k
K ] for k = {1, . . . ,K}, that is estimated on a separate validation

set. In particular, the element vkj in the informed prior vk for class k is defined
as

vkj =

{
Vacc
k if j == k

(1− Vacc
k ) · 1

K−1 otherwise
(3)

where, Vacc
k is validation set accuracy for class k using the pretrained (without

label smoothing) model M. Example: For a pre-trained, three-class classification
model with 60% validation accuracy for a specific class creates a label vector
[0.6, 0.2, 0.2], which coerces the model to generate class prediction probabilities to
match the validation accuracy.

Learning the priors on the validation set ensures unbiased estimates and takes
into account the current model calibration status. Furthermore, the smoothening
of the prior is also dependent on the class accuracy. Priors of classes that are
already accurately predicted by the model are smoothened to lesser extent than
those of classes that are not accurately predicted. During training, the informed
prior vk corresponding to the ground truth class label for the instance x is used
in place for a fixed uniform prior u. In theory, vk may be computed periodically
after every few training iterations. However, we compute it only once before LS+
is applied. The complete pseudo-code for LS+ is presented in Algorithm 1.
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4 Experiments and Results

Datasets — We evaluate LS+ using three benchmark datasets curated for med-
ical image classification: (i) Chaoyang - Histopathology dataset [30] consists of
colon slides with a patch size of 512 × 512. It is a multiclass (K = 4) dataset
that is divided into training and testing sets consisting of 4021 and 2139 im-
ages respectively. Furthermore, we partitioned the training set into train (90%)
and validation (10%). (ii) A Minimalist Histopathology Image Analysis (MHIST)
dataset [26] comprises of 3,152 histopathology images of colorectal polyps. It is
a binary class (K = 2) dataset with images of size 224× 224. The training and
test sets consist of 2175 and 977 samples, respectively. Here, we partitioned the
training dataset into train (80%) and validation (20%). (iii) International Skin
Imaging Collaboration (ISIC - 2018) [4, 25] is a multi-class dataset (K = 7;
highly imbalanced) of dermoscopic images of skin with a size of 600 × 450. It
consists of separate train/validation/test sets with 10015/193/1512 samples, re-
spectively. The performance on the separate test set in all the three datasets
facilitates an unbiased evaluation of LS+ and other approaches.
Network Architectures and Implementation Details — We used two pop-
ular image classification architectures: ResNet-34 and ResNet-50, implemented
using Tensorflow 2.4. These models are ImageNet pretrained and were specifi-
cally chosen for their effectiveness on small biomedical datasets [2, 27]. During
training, all images are resized to 224×224 dimension. We used Adam optimizer
with a learning rate set to 1e−3, batch size of 8, and standard data augmentation
techniques [18]. For training LS+, we used α = 0.5.
Baseline Methods — We compare LS+ with the following models: (a) Conven-
tional classification using cross-entropy loss with one-hot encoded labels (Hard
Labels), (b) cross-entropy loss with label smoothing (LS) [23], (c) focal loss
(γ = 3) (FL) [15] that provides implicit regularization and two auxiliary loss
methods - (d) difference between confidence and accuracy (DCA) [14], and (e)
multi-class difference in confidence and accuracy (MDCA) [7].
Evaluation Metrics — We use several metrics to evaluate the models. Per-
formance of the models is measured using accuracy (ACC), area under receiver
operating characteristic (AUROC), precision, recall, F1-score. Similarly, a com-
prehensive comparison of calibration is achieved using expectation calibration
error (ECE), adaptive calibration error (ACE), static calibration error (SCE),
cross-entropy error (CE) and brier loss (Brier) [22].

4.1 Results

Calibration performance comparison with SOTA — Table 1 provides a
quantitative comparison of our method with SOTA approaches on Chaoyang,
MHIST and ISIC-2018 datasets, respectively. These results demonstrate that
validation accuracy-based label smoothing provides significant and consistent
reduction across all calibration error metrics. Remarkably, this improvement in
calibration was achieved without compromising performance. In fact, marginal
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Table 1: Quantitative Results. Performance and Calibration results on the
test set of three benchmark datasets. The reported values are the average of 3
runs and given as percentages (%) with SD (σ) as subscript. ↑: Higher is better,
↓: Lower is better. Architectures: R34 (ResNet-34), R50 (ResNet-50); Datasets:
D1 (Chaoyang), D2 (MHIST) and D3 (ISIC).
D1 Method ACC ↑ AUROC ↑ Precision ↑ Recall ↑ F1 ↑ ECE ↓ ACE ↓ SCE ↓ CE ↓ Brier ↓

R34

HL 81.501.2 94.080.5 75.911.1 74.581.3 75.101.3 11.332.5 11.212.7 06.261.2 74.2115.2 29.742.5
LS [23] 81.910.4 93.840.6 76.940.9 74.590.8 75.510.7 03.670.9 03.800.8 03.700.2 50.652.8 26.431.1
FL [15] 81.891.1 94.070.5 76.582.2 75.681.1 75.681.6 08.346.2 08.346.1 05.783.3 52.574.2 28.162.3
DCA [14] 81.910.7 93.860.3 76.630.6 73.411.3 74.571.1 09.271.4 09.061.6 04.940.8 60.343.8 27.751.3
MDCA [7] 81.521.5 93.131.2 76.551.5 74.911.6 75.451.4 10.722.7 10.582.9 05.991.2 81.9222.9 29.422.4
Ours 82.280.7 94.020.2 77.301.3 75.361.4 75.990.7 02.810.7 03.131.1 03.490.4 49.762.2 25.660.9

R50

HL 80.790.5 93.200.5 75.510.4 73.980.3 74.560.2 09.264.5 09.164.6 05.711.6 72.8122.7 29.932.3
LS [23] 80.621.5 93.040.6 75.411.4 73.921.4 74.481.4 03.510.4 04.270.6 03.660.3 53.772.2 27.911.4
FL [15] 80.523.0 93.471.0 76.302.0 72.602.6 73.732.6 04.160.6 04.260.9 04.061.6 53.988.1 27.703.5
DCA [14] 79.820.4 92.750.3 74.821.0 72.321.7 73.181.1 13.890.4 13.880.4 07.430.2 92.423.1 33.300.4
MDCA [7] 79.882.0 92.440.6 75.222.5 71.033.2 72.263.0 11.854.3 11.704.5 06.762.0 86.8227.9 32.884.2
Ours 81.441.7 93.560.6 76.392.0 74.761.2 75.201.9 03.330.5 03.450.7 04.260.8 53.065.2 27.172.7

D2 Method ACC ↑ AUROC ↑ Precision ↑ Recall ↑ F1 ↑ ECE ↓ ACE ↓ SCE ↓ CE ↓ Brier ↓

R34

HL 77.143.6 84.322.7 78.275.8 73.631.8 74.142.4 17.403.6 17.243.7 17.983.7 101.4024.6 38.976.8
LS [23] 78.681.5 87.161.0 78.453.4 76.312.2 76.511.4 06.501.6 06.781.4 08.132.2 45.922.4 29.711.2
FL [15] 80.321.0 87.101.4 80.131.1 76.631.2 77.701.2 12.012.0 12.112.3 11.762.5 48.250.6 31.551.2
DCA [14] 77.831.1 85.831.0 77.100.8 73.941.7 74.861.6 08.511.5 08.461.9 09.012.1 51.025.2 31.451.8
MDCA [7] 80.251.7 87.451.4 79.381.9 77.442.2 78.122.0 12.102.4 11.912.2 12.282.5 63.2811.6 31.360.8
Ours 81.480.9 87.690.7 80.771.3 78.700.6 79.470.8 05.680.8 06.420.8 06.751.0 44.780.8 28.430.7

R50

HL 77.214.5 83.634.5 75.714.7 74.226.1 74.655.8 12.173.0 11.893.2 12.332.6 61.2411.1 34.385.8
LS [23] 80.731.4 86.841.5 80.432.6 77.950.5 78.620.7 04.571.9 05.331.6 06.171.4 45.383.5 28.602.2
FL [15] 77.251.2 84.011.0 77.602.3 72.812.8 73.652.7 10.613.6 10.743.5 11.932.5 51.621.5 34.071.0
DCA [14] 79.403.0 85.503.1 78.973.2 75.613.7 76.613.7 07.991.1 08.081.1 09.141.0 60.4311.5 30.944.1
MDCA [7] 77.622.4 84.222.8 76.222.7 74.972.3 75.442.4 09.913.0 09.823.3 10.053.0 60.5410.5 33.084.0
Ours 81.450.9 88.290.4 80.571.2 79.041.2 79.601.0 04.030.6 04.270.7 05.801.2 42.400.9 26.870.5

D3 Method ACC ↑ AUROC ↑ Precision ↑ Recall ↑ F1 ↑ ECE ↓ ACE ↓ SCE ↓ CE ↓ Brier ↓

R34

HL 74.250.3 92.370.8 63.762.9 52.910.9 55.851.1 15.384.7 15.304.7 04.781.2 112.5130.2 40.773.1
LS [23] 73.191.1 88.613.6 63.693.6 49.942.9 52.694.3 08.843.0 09.522.9 03.370.5 85.988.4 39.451.8
FL [15] 74.011.8 90.691.4 64.954.4 52.023.9 55.903.9 04.192.1 04.442.4 03.010.7 77.035.4 37.062.3
DCA [14] 74.371.5 91.131.3 65.643.8 53.275.0 57.383.8 12.423.3 12.253.4 04.080.8 90.6713.8 38.704.0
MDCA [7] 72.621.5 90.152.9 61.784.4 53.415.2 55.743.2 13.445.5 13.455.4 04.561.2 100.4020.4 41.704.7
Ours 74.030.8 90.020.4 61.285.9 48.362.4 50.231.6 03.720.5 03.360.6 02.040.2 76.850.7 36.660.2

R50

HL 72.840.3 89.140.8 61.751.6 49.381.7 52.922.1 15.413.1 15.363.0 04.910.9 137.8918.8 43.102.2
LS [23] 73.281.8 88.242.4 60.082.5 49.566.0 51.415.3 05.310.2 06.450.9 02.800.5 85.351.1 38.441.1
FL [15] 71.961.8 88.732.2 59.111.5 51.073.6 53.482.9 06.544.1 06.743.8 03.280.7 105.1819.7 41.113.5
DCA [14] 72.670.8 88.773.0 61.353.7 48.972.8 52.122.1 14.026.7 13.816.5 04.381.8 112.8236.0 42.495.1
MDCA [7] 73.681.0 89.132.1 61.093.6 50.562.8 53.952.9 17.656.2 17.626.2 05.441.5 143.5943.3 43.324.8
Ours 73.770.9 89.011.5 63.121.4 51.041.4 55.031.5 06.960.6 06.951.0 02.630.2 83.613.6 37.381.1

improvement can be observed in majority of the performance metrics across dif-
ferent architectures and datasets. Even for the highly imbalanced ISIC dataset,
our model provides notable enhancement across all calibration metrics with min-
imal effect on performance, further solidifying the effectiveness of our approach.

Uncertainty-based Retention Curves — To assess the reliability of the mod-
els, we plot the accuracy of a model as a function of its retention rate. As the
fraction of predictions retained is increased, ground truth labels are replaced



LS+: Informed Label Smoothing vii

Fig. 1: Retention Curves. Accuracy as a function of retention fraction along
with the area under the retention curve (R-AUC) values using ResNet-34 for all
three datasets. HL - Hard Labels, LS - Label Smoothing, FL - Focal Loss, DCA -
Difference between Confidence and Accuracy and MDCA - Multi-class Difference
in Confidence and Accuracy.

with predicted labels in decreasing order of prediction scores, providing a com-
prehensive view of error distribution across the dataset. For a zero retention
fraction, we opt for the predicted label vector (Ω) to be the same as the ground
truth (G), resulting in 100% accuracy. As we increase the retention fraction,
we replace the label vector Ω with the fraction of the original predicted labels
from samples having the highest predicted probability. We continue the substi-
tution process until the entire label vector is replaced with the predicted labels.
The area under this accuracy-retention curve (R-AUC) serves as a metric for
evaluating the quality of uncertainty estimates (predicted confidence scores) [1],
with a higher value indicating models with better predictions. Figure 1 exhibits
superior reliability of our proposed validation accuracy based label smoothing
model, making it more suitable for medical image analysis. Additional plots for
ResNet-50 are shown in the supplementary material.
Clinical Significance of Predicted Confidence Scores — To gain deeper
insights into model calibration, we distinguish between the confidence scores
assigned to correct and incorrect classified samples in Figure 2. Ideally, the con-
fidence scores of the correctly predicted samples should be close to 1 (indicating
high certainty), while incorrect classified samples should move away (reflecting
uncertainty). The density plots associated with the majority of SOTA approaches
(except FL) exhibit left-skewed distributions for correct predictions (green), sig-
nifying high confidence levels of these models. Undesirably, these models also ex-
press high confidence in their incorrect predictions (red). FL exhibits contrasting
behaviour with right-skewed distributions for both correct and incorrect predic-
tions indicating overall low confidence levels. Our proposed approach strikes the
right balance by assigning relatively high scores for correctly classified samples
while adeptly conveying uncertainty associated with incorrectly classified sam-
ples with low scores. This nuanced approach positions our model as a reliable
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and trustworthy solution that increases the likelihood of expert medical inter-
vention when the model lacks confidence. Additional plots for different datasets
and architectures are shown in the supplementary material.

Fig. 2: Comparison of density plots for correct (green) and incorrect (red) classi-
fication confidences for ResNet-34 (top) and ResNet-50 (bottom) using MHIST
dataset. The area under the histogram integrates to 1. We have clipped the y-
axis in all the plots to better visualize the trends.

5 Conclusion

We propose an informed label smoothing strategy (LS+) that addresses the
shortcomings of the traditional version by taking into consideration the model’s
current calibration status as well as class-wise calibration levels. This is achieved
by replacing the uniform prior with an informed class-specific prior estimated
from the class accuracy on a separate validation set. Experimental results from
three benchmark medical image classification tasks show that LS+ provides
significant improvement in calibration. Consistent improvement across multi-
ple performance and calibration metrics using two different architectures as well
as higher R-AUC values along with density plots exhibit reliability and clini-
cal readiness of LS+. Our present study assumes that both the validation and
test sets stem from the same distribution. In medical imaging, heterogeneity
of population, scanners and acquisition protocols presents a shift in distribu-
tion. Hence, our future efforts will be directed towards adapting LS+ to excel in
out-of-distribution (OOD) scenarios.
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