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Abstract. Medical image interpretation often encompasses diverse tasks,
yet prevailing AI approaches predominantly favor end-to-end image-to-
text models for automatic chest X-ray reading and analysis, often overlook-
ing critical components of radiology reports. At the same time, employing
separate models for related but distinct tasks leads to computational over-
head and the inability to harness the benefits of shared data abstractions.
In this work, we introduce a framework for chest X-ray interpretation,
utilizing a Transformer-based object detection model trained on abundant
data for learning localized representations. Our model achieves a mean av-
erage precision of ∼94% in identifying semantically meaningful anatomical
regions, facilitating downstream tasks, namely localized disease detection
and localized progression monitoring. Our approach also yields competi-
tive results in localized disease detection, with an average ROC 89.1%
over 9 diseases. In addition, to the best of our knowledge, our work is the
first to tackle localized disease progression monitoring, with the proposed
model being able to track changes in specific regions of interest (RoIs)
with an average accuracy ∼67% and average F1 score of ∼71%. Code is
available at https://github.com/McMasterAIHLab/CheXDetector.

Keywords: Disease Localization · Representation Learning · Longitudi-
nal CXR Relationships · Transformer-based detection

1 Introduction

Chest X-ray is the most common medical imaging modality. In recent years,
with the introduction of multiple large-scale annotated chest X-ray datasets
[4,5], the field of automatic interpretation of chest X-ray images leveraging
artificial intelligence has seen a great deal of activity. There are generally two
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lines of work in this area. An early wave of works has focused on accurate
detection/classification for a limited number of diseases or findings [13]. The
obvious flaw is the limited scope, as radiology reports are not merely lists of
findings. Instead, they consist of localized descriptions, often with comparative
and localized references to the progress of disease from a previous scan. In response
to these shortcomings, subsequent works have expanded the scope of these early
works by including a larger number of findings in their classification models
than those labeled in the publicly available datasets [17]. With the increased
popularity of language models in medical imaging, the more recent wave of
activity is focused on end-to-end training of image-to-sequence models that
produce a complete radiology report given a chest X-ray image [7,11]. This line of
work addresses the problem of limited scope and application of disease classifiers.
However, these models are often evaluated for their readability and similarity
to radiologist reports, and not for the accuracy of the findings they list or their
comprehensiveness [18]. As is common in generative models, these models can
often produce factually incorrect language. Additionally, there has been a growing
interest in disease detection with semantically meaningful localization [1,10] as
well as the monitoring of disease progression within image pairs, assessing whether
a patient’s condition has improved, deteriorated, or remained stable over time
[6,9]. Despite these advancements, to the best of our knowledge, the challenge of
localized disease progression monitoring, i.e., predicting disease progression in
specific anatomical regions, remains unexplored.

Given the weaknesses of direct image-to-text models and the variety of de-
tection/classification tasks involved in chest X-ray interpretation, we propose to
train and utilize a DEtection TRansformer (DETR) anatomical region detection
model [2] to address multiple clinically relevant downstream tasks such as local-
ized disease detection and localized disease progression monitoring. Specifically,
previous works have provided large datasets of X-ray images with marked bound-
ing boxes for anatomical regions (e.g., ‘lower lobe of right lung’) [14,15]. We define
the detection of these bounding boxes as the task for training a DETR model.
When trained, this model provides a rich feature vector for each anatomical
region that can be used for both localized disease detection and localized disease
progression monitoring. For each task, we train relatively compact models, using
the features from the upstream model. We show that the performance of our
proposed framework is comparable to models specifically trained for these tasks.
Our contributions can be summarized as follows:

(1) We introduce a novel approach for chest X-ray interpretation. By utilizing rich
feature vectors generated by a DETR model trained for anatomical region
detection, we address two clinically relevant downstream tasks simultaneously,
i.e., localized disease detection and localized progression monitoring.

(2) We introduce the task of disease progression monitoring at a localized level.
Our experimental results show that a simple model that extracts anatomical
region feature differences can achieve competitive accuracy on this new task.
We additionally demonstrate that a simple MLP architecture can jointly
achieve competitive performance in localized disease detection.
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Fig. 1: We first train a DETR anatomical region detection model on a large
collection of CXR images. Given a pair of CXR images, the pretrained DETR
decoder extracts visual features for anatomical regions of interest (RoI) for each
image. These features are then used to compute region-based visual differences
between the two CXRs. The information encoded in the difference vector is
summarized through the self-attention mechanism that captures the importance
of each RoI vector in relation to other RoIs and helps the model focus on relevant
RoI changes. The resulting summary vector is concatenated with the region of
interest (RoI) vector and fed into a multi-layer perceptron (MLP) classification
layer for predicting whether the condition localized on the specific RoI has
improved, worsened, or remained unchanged.

(3) We further provide comprehensive ablation analysis with three model varia-
tions and qualitative examples to show the importance of anatomical regions
in disease progression monitoring.

2 Methodology

2.1 Problem Definition

Let C = {(X,X′)ı̇}Nı̇=1 be a set of CXR image pairs, where X,X′ ∈ RH×W×C ,
and H,W and C are the height, width, and number of channels, respectively.
Each image X is associated with a localized label set Y1

i = {yı̇,k,m}K,M
k=1,m=1 where

y1ı̇,k,m ∈ {0, 1}, indicating whether the label for the m-th finding appears in the
k-th anatomical region of the image or not. In addition, each image pair (X,X′)ı̇
is associated with a label set Y2

i = {yı̇,k}Kk=1, where y2ı̇,k indicates whether the
overall condition in the k-th anatomical region of the image pair (X,X′)ı̇ has
improved, worsened, or remained the same. The goal is to design a model that
accurately predicts a set of labels indicative of the presence of pre-defined diseases
at every anatomical Region of Interest (RoI) for an unseen image, and is also
able to compare the two unseen images (X,X′) to predict localized progression
labels as accurately as possible.
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2.2 DETR region representation extraction backbone

To this end, we first utilize a DETR pre-trained region detection model for
extracting feature representations of anatomical regions of interest (RoIs). The
DETR region detection outputs a set of bounding boxes denoted as B =
{(b1, c1, s1), (b2, c2, s2), . . . , (bK , cK , sK)}, where bi = (xmin, ymin, xmax, ymax) rep-
resents the coordinates of the i-th bounding box, ci denotes the class label associ-
ated with the box (chosen from a predefined set of K anatomical regions), and si
represents the confidence score associated with each region query, indicating the
likelihood of corresponding to a valid RoI. For each region query, the output of the
last hidden state of the decoder can be represented as F = {f1, f2, . . . , fi, . . . , fK},
where fi represents the last hidden state of the decoder for the i-th region query.
These hidden states serve as learned anatomical region feature representations,
capturing the contextual information extracted by the decoder regarding the
corresponding anatomical region query.

2.3 Localized Disease Detection

By utilizing the extracted feature representations F = {f1, f2, . . . , fi, . . . , fK} for
the K anatomical regions of interest (RoIs), we train a compact feed-forward
network to predict the presence or absence of particular disease in the respective
RoIs. Let yı̇,k,m represent the ground truth label indicating the actual presence
(1) or absence (0) of the m-th disease in the k-th RoI for the ı̇-th sample. Similarly,
let ŷı̇,k,m represent the predicted probability for the presence or absence of the
m-th disease in the k-th RoI for the ı̇-th sample. The binary cross-entropy loss L
for a batch of N images can be defined as:

L = − 1

N

N∑
ı̇=1

K∑
k=1

M∑
m=1

(ŷı̇,k,m · log(yı̇,k,m) + (1− ŷı̇,k,m) · log(1− yı̇,k,m)) , (1)

where N denotes the batch size and M the number of diseases.

2.4 Localized Disease Progression Monitoring

For localized disease progression monitoring, the goal is to predict, for each image
pair (X,X′)ı̇, whether the condition of a particular k-th anatomical region has im-
proved, worsened, or remained unchanged. Let F1 = {f1,1, f1,2, . . . , f1,k, . . . , f1,K}
represent the feature vectors extracted from the regions of interest (RoIs) in
the first image Xi, and F2 = {f2,1, f2,2, . . . , f2,k, . . . , f2,K} represent the feature
vectors extracted from the corresponding RoIs in the second image X′

i, where K is
the number of RoIs. The model computes the differences of region vectors between
the two images Fdiff = [F2 − F1] = [f2,1 − f1,1, . . . , f2,k − f1,k, . . . , f2,K − f1,K ].
To summarize the RoI information and capture the relationships between different
RoIs, we employ a self-attention mechanism. The self-attention operation on Fdiff

can be denoted as:

α = Softmax

(
FdiffF

T
diff√

dk

)
, (2)
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where α = [α1, α2, . . . , αk] represents the attention weights for each RoI, dk is
the dimension of the key vectors, and the softmax function is applied along the
rows of the matrix. Next, the weighted sum of the difference feature vectors
corresponding to each RoI k is computed using the attention weights, i.e., αFdiff,
providing a summarized representation of the global RoI information considering
the interdependencies between different RoIs. To perform the final localized
disease progression prediction, we report results in both “Global” and “Region-
focused” attention variants. In the “Global” approach, we average the rows of the
self-attention output to obtain a single global vector to be used for all the RoIs of
the chest x-ray, which is concatenated with Fk and passed through a classification
layer. In the “Region-focused” approach, the k-th row of the self-attention output,
corresponding to the k-th RoI, is concatenated with Fk and used directly for
prediction, i.e., ŷk = g ([attk;Fk]), where attk is the self-attention output for
the k-th RoI and Fk = [f2,k − f1,k] is the difference vector for the k-th RoI. The
disease progression model loss for a batch of N images is defined as:

L = − 1

N

N∑
i=1

K∑
k=1

[yi,k · log(ŷi,k) + (1− yi,k) · log(1− ŷi,k)] , (3)

where L is the total loss over the entire batch, N is the batch size, K is the
number of RoIs, and yi,k, ŷi,k are the ground truth label and model prediction
for the k-th RoI of the i-th image.

3 Experiments

Implementation Details. We employ DETR with ResNet-50 backbone as the
initial model for fine-tuning and extracting feature representations of anatomical
regions of interest. The model was trained using PyTorch-Lightning [3], with
AdamW optimizer [8], weight decay of 10−4, backbone learning-rate of 10−5 and
a learning-rate of 10−3. To avoid the gradient exploding problem, we use gradient
clipping of 0.1. The initial batch size for training is 13. For further increasing
the batch size while considering the memory limitations, we use accumulated
gradients of 5. The model was trained for 25 epochs. To filter out unwanted
detections, we apply a threshold τ > 0.85 to the scores associated with each region
query. Only region queries with scores exceeding this threshold are considered
valid detections. For the disease classification module, we use a feed-forward
network (FFN) similar to DETR’s FFN with an additional batch norm between
layers. The input dimension for the FFN is 256, hidden dimension of 256, output
dimension of 9 (equal to the number of studied finding classes). The model is
trained for 100 epochs using Adam optimizer with a learning rate of 5×10−4 and
a weight decay of 10−5. For the localized disease progression detection module, a
similar feed-forward network with an input dimension of 512, hidden dimension
of 256 with two layers and output dimension of 3 is used. The model is trained
for 100 epochs using Adam optimizer with a learning rate of 10−3 and a weight
decay of 10−5.
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Table 1: Dataset characteristics for progression labels per anatomical regions at:
right upper lung zone (RULZ), right mid lung zone (RMLZ), right lower lung
zone (RLLZ), right costophrenic angle (RCA), right hilar structures (RHS), right
apical zone (RAZ), left upper lung zone (LULZ), left mid lung zone (LMLZ),
left lower lung zone (LLLZ), left costophrenic angle (LCA), left hilar structures
(LHS), cardiac silhouette (CS)

Progression Label RULZ RMLZ RLLZ RCA RHS RAZ

Improved 957 2,338 5,681 5,249 7,799 744
Worsened 1,301 3,537 8,333 6,406 7,699 543
No Change 37,149 34,617 28,673 30,529 27,883 37,915

Total 39,407 40,492 42,687 42,184 43,381 39,202

Progression Label LULZ LMLZ LLLZ LCA LHS CS

Improved 678 2,382 6,305 5,225 7,749 1,722
Worsened 927 3,414 8,996 6,399 7,599 3,097
No Change 37,596 34,549 27,667 30,478 27,954 35,036

Total 39,201 40,345 42,960 42,102 43,302 39,855

Dataset. We make use of the Chest ImaGenome dataset [15]. This dataset
consists of two different sub-datasets: 1) Locally labeled data using a combination
of rule-based natural language processing (NLP) and CXR atlas-based bounding
box detection techniques [14,16] to generate the annotations (silver dataset).
This subset comprises 237, 827 frontal MIMIC-CXRs [5]. 2) Manually validated
and corrected studies of 500 patients as ground truth. Chest ImaGenome is
represented as an anatomy-centered scene graph with 1, 256 combinations of
relation annotations between 29 CXR anatomical locations and their attributes.
Each image is structured as one scene graph, resulting in approximately 670, 000
localized comparison relations between the anatomical locations across sequential
exams. Rich representation features play a key role in performing the downstream
task efficiently. To train the upstream model, we utilize the entire silver dataset
of Chest ImaGenome with 70/10/20 split.

For localized disease progression, we consider the localized comparison relation
data within Chest ImaGenome that pertains to cross-image relations for nine
diseases of interest. Each comparison relation in the Chest ImaGenome dataset
includes the DICOM identifiers of the two CXRs being compared, a set of
comparison labels per some anatomical regions, and a set of disease names. In
some cases, more than one progression label was assigned to one region. We
excluded these samples from the dataset to focus on more accurate labels. The
comparison is labeled as “no change”, “improved” or “worsened”, which indicates
whether the patient’s condition has remained stable, improved, or worsened,
respectively. In contrast to [9] which reports global classification, we solve this
problem at the local level, acquiring one progress label per anatomical location.
We use 35, 646 CXR pairs in total that pertain to the nine diseases of interest.
The distribution of the data is improved (53, 134), worsened (58, 251), and no
change (390, 046). We use 70/10/20 train/validation/testing split across studies.
Due to the large gap between the number of “no change” labels and two other
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Table 2: Area under PR curves for the 12 anatomical locations with an mPA of
93.5%, calculated using [12]. Format for each cell: (Anatomical location: Area
under PR curve, IoU threshold = 0.5)

RULZ RMLZ RLLZ RCA RHS RAZ
0.984 0.961 0.962 0.818 0.963 0.968

LULZ LMLZ LLLZ LCA LHS CS
0.983 0.964 0.955 0.743 0.960 0.959

Fig. 2: Localized Multi-label Disease Detection Results

classes, only for training, we consider a random subset of “no change” labels
equal to the maximum number of labels in the other two classes. Table 1 provides
further details. For localized disease classification, we utilize the silver dataset
(237, 827 CXRs) to train the model. We use 70/10/20 train/validation/testing
split across studies. High-level statistics of the generated dataset based on findings
and anatomical regions of interest are included in the supplementary material.

4 Results

Upstream detection network: Table 2 reports the area under precision-recall
curves for the twelve target anatomical regions. The mean average precision
(mAP) is 93.5%. For 10 of the 12 regions, the area under ROC curve is at or
above 96%, with only right and left costophrenic angle being the exceptions.

Localized disease detection: Figure 2 shows the ROC curves obtained for
the nine findings from the localized disease detection model. Despite a simple
MLP architecture, the model provides an average AUC score of 89.1%. The closet
benchmark to this work is [1] which reports localized disease detection on the
same dataset with average AUC scores in the range of 89% to 93% for various
models trained for the specific task of localized disease detection.
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Table 3: Localized Disease Progression Results (Accuracy/Weighted F1)
Anatomical location Attention Attention MLP

(Global) (Region-focused)

Right Upper Lung Zone 66.66/77.07 78.93/84.94 96.17/94.30
Right Mid Lung Zone 62.25/69.12 63.40/70.12 79.76/80.07
Right Lower Lung Zone 56.38/57.47 58.33/59.69 17.48/7.15
Right Costophrenic Angle 61.72/64.12 56.62/60.69 46.67/51.78
Right Hilar Structures 61.17/59.93 59.24/60.29 16.41/6.89
Right Apical Zone 66.69/78.11 83.81/89.53 97.44/96.17

Left Upper Lung Zone 66.56/77.75 81.01/86.85 97.15/95.75
Left Mid Lung Zone 63.80/70.09 69.23/74.30 83.34/81.82
Left Lower Lung Zone 55.56/55.91 54.55/55.76 19.98/8.73
Left Costophrenic Angle 61.86/64.43 61.50/64.38 38.19/42.64
Left Hilar Structures 67.88/63.42 61.87/63.20 16.59/9.29
Cardiac Silhouette 65.38/73.40 67.59/75.29 90.28/88.00

Weighted Average 67.36/70.60 66.65/70.86 60.35/57.54

Prior Current

Ground Truth No change

Model Prediction (Ours) No change
CheXRelFormer No change

Prior Current

Ground Truth Worsened

Model Prediction (Ours) Worsened
CheXRelFormer No change

Fig. 3: Examples of model predictions obtained by our model compared against
the ground-truth labels and CheXRelFormer model [9]. Lung Opacity pathology
(left) and Pneumonia pathology (right).

Localized disease progression: The results for localized progression labeling
are presented in Table 3 for the three model variations. It is clear that the
introduction of the attention layer in this classifier has improved the results
compared to the baseline of MLP. Both the global and region-focused attention
architectures outperform the MLP model, with a slight edge for global attention
which provides an average accuracy ∼ 67% and an average F1 score of ∼ 71%. For
this application, we do not have a current direct comparison from previous work.
We trained a CNN Siamese network equivalent to the one in [15] with 3 classes,
on 9 diseases and 12 anatomical regions, maintaining our original train/test splits.
This simple model delivered a weighted average accuracy of only ∼ 34% and F1
score of ∼ 32%. Authors in CheXRelFormer [9] report global disease progression
with an average accuracy of 49% across the diseases. Figure 3 highlights the
advantage of localized over global progress classification. The progression labels in
different anatomical locations can be inconsistent. As the figure shows, while our
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local model correctly classifies the progression label for both regions of interest,
the global label by definition provides a single label that cannot be correct for
both regions.

5 Conclusions

In this study, we presented a novel approach for interpreting chest X-rays,
leveraging rich feature vectors derived from a DETR model trained specifically for
anatomical region detection. By harnessing these feature vectors, we concurrently
addressed two clinically significant downstream tasks: localized disease detection
and localized progression monitoring. Furthermore, we introduce the novel task of
disease progression monitoring at a localized level, demonstrating that extracting
anatomical region feature differences can achieve competitive accuracy in this
domain. Our experiments showcase the effectiveness of representation learning
combined with simple architectures in achieving competitive performance for
localized disease detection and progression.
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