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Abstract. Multiple Instance Learning (MIL) has emerged as a domi-
nant paradigm to extract discriminative feature representations within
Whole Slide Images (WSIs) in computational pathology. Despite driv-
ing notable progress, existing MIL approaches suffer from limitations in
facilitating comprehensive and efficient interactions among instances, as
well as challenges related to time-consuming computations and overfit-
ting. In this paper, we incorporate the Selective Scan Space State Se-
quential Model (Mamba) in Multiple Instance Learning (MIL) for long
sequence modeling with linear complexity, termed as MambaMIL. By
inheriting the capability of vanilla Mamba, MambaMIL demonstrates
the ability to comprehensively understand and perceive long sequences
of instances. Furthermore, we propose the Sequence Reordering Mamba
(SR-Mamba) aware of the order and distribution of instances, which
exploits the inherent valuable information embedded within the long
sequences. With the SR-Mamba as the core component, MambaMIL
can effectively capture more discriminative features and mitigate the
challenges associated with overfitting and high computational overhead.
Extensive experiments on two public challenging tasks across nine di-
verse datasets demonstrate that our proposed framework performs fa-
vorably against state-of-the-art MIL methods. The code is released at
https://github.com/isyangshu/MambaMIL.

Keywords: Mamba · Computational Pathology · Whole Slide Images ·
Multiple Instance Learning.

† indicates the equal contribution.
∗ indicates the corresponding author.

https://github.com/isyangshu/MambaMIL


2 Shu Yang et al.

1 Introduction

The digitalization of pathological images into Whole Slide Images (WSIs) has
paved the way for computer-aided analysis in computational pathology [19,12,9].
However, employing deep learning methods for WSI analysis encounters unique
challenges, primarily due to the high resolution of WSIs and the lack of pixel-
level annotations. To address these issues, Multiple Instance Learning (MIL) [1,4]
has arisen as an ideal solution, where each WSI is represented as a “bag” and
partitioned into a sequence of tissue patches termed “instances”.

The most widely used paradigm of MIL involves converting instances into
low-dimensional features using pre-trained models [10,11,19], followed by ag-
gregating these features into bag-level representations for subsequent analysis.
Under this paradigm, MIL conceptualizes WSI analysis as a long sequence mod-
eling problem, aiming to model the correlation between instances as well as
overall contextual information within the entire bag to capture discriminative
information. Despite the impressive performance, there remain several issues in
existing MIL methods. Attention-based methods [12,14,15,23] primarily focus
on instance-level information based on independent and identical distribution
hypotheses. However, these methods neglect the contextual relationships among
instances, resulting in inadequate representations of WSIs. Additionally, sev-
eral methods [3,22,24,17] utilize transformers [18] for their capability to explore
mutual-correlations between instances and model long sequences. Nonetheless,
they face significant performance bottlenecks due to extensive computations and
overfitting. Overall, the existing methods have limitations in comprehensively
mining the contextual information within long sequences, which hinders perfor-
mance.

Recently, Structured State Space Sequence (S4) [8] has been introduced as an
efficient and effective architecture to address the bottleneck concerning long se-
quence modeling. Furthermore, Selective Scan Space State Sequential Model [7],
namely Mamba, advances S4 in discrete data modeling by employing an input-
dependent selection mechanism and a hardware-aware algorithm, which enables
Mamba to achieve linear complexity without sacrificing global receptive fields.
However, for inherently non-sequential visual data, the direct application of
Mamba to a patchified and flattened image would inevitably lead to a con-
straint in the receptive fields. This limitation stems from the fact that Mamba
solely permits interactions between each patch and previously scanned posi-
tions, precluding the estimation of relationships with unscanned patches. Unlike
typical visual modalities [16,20,21], WSIs contain scattered and scarce positive
patches that exhibit weak spatial correlation, which makes them highly suitable
for leveraging the robust sequential modeling capabilities of Mamba. Recently,
S4MIL [6] introduces the S4 model to WSI analysis as a multiple instance learner
for instance sequences, which demonstrates the effectiveness of SSM in capturing
long-range dependencies. Note that it directly adopts the S4 model without fully
considering the unique characteristics of WSIs, resulting in sub-optimal results.

Motivated by the above observations, we propose an efficient and effective
benchmark MIL model (MambaMIL) with the following contributions: (1) We
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incorporate the Mamba framework in MIL to tackle the challenges associated
with long sequence modeling and overfitting, marking the first application of
Mamba in computational pathology. (2) We propose the Sequence Reordering
Mamba (SR-Mamba) aware of the order and distribution of instances, which
excels at capturing long-range dependencies among scattered positive instances.
As the core component of MambaMIL, SR-Mamba is tailored to learn the corre-
lations between instances in both sequential ordering and transpositional order-
ing, which significantly enhances the capability of the original Mamba to capture
more discriminative features. (3) To investigate the effectiveness of MambaMIL,
we conduct comprehensive experiments including overall comparison and abla-
tion studies on two challenging tasks across nine datasets, which demonstrates
that MambaMIL can achieve superior performance against the state-of-the-art.

2 Method

In this section, we start by presenting the preliminaries associated with State
Space Models. Subsequently, we elaborate on the MambaMIL and its core com-
ponent: Sequence Reordering Mamba (SR-Mamba).

2.1 Preliminaries

Inspired by State Space Models [13], structured state space sequence (S4) models
have emerged as a promising architecture for effective long sequence modeling.
S4 models are defined with four parameters (△, A,B,C) as linear time-invariant
systems, which map stimulation x(t) ∈ RL to response y(t) ∈ RL though an
implicit latent state h(t) ∈ RN . The entire progress can be formulated as,

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ RN×N refers to evolution parameter. B ∈ RN×1 and C ∈ RN×1

present projection parameters. S4 models utilize a timescale parameter △ to
transform the continuous parameters A, B to the discrete parameters Ā, B̄,

Ā = exp(△A), B̄ = (△A)−1(exp(△A)− I) · △B. (2)

After transforming the parameters, we can utilize the discrete parameters to
re-frame the Eq. 1 in the recurrent mode for efficient autoregressive inference,

ht = Āht−1 + B̄xt, yt = Cht. (3)

Alternatively, the models can also compute output through convolutional mode
for efficient parallelizable training,

K̄ = (CB̄,CĀB, ..., CĀM−1B̄), y = x ∗ K̄. (4)

Mamba further integrates selection mechanisms into S4 models to make the
parameters be functions of the input with the efficient hardware-aware parallel
algorithm. Therefore, Mamba can conduct effective and efficient long sequence
modeling by selectively propagating or forgetting information along the sequence
based on the current token.
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Fig. 1: Overview of MambaMIL. Given a set of patches cropped from a slide,
we sequentially utilize Feature Extractor, Linear Projection, stacked SR-Mamba
modules and Aggregation for WSI analysis.

2.2 Overview of MambaMIL

To efficiently capture the comprehensive contextual information within long se-
quences of instances, we introduce a novel approach, MambaMIL, by integrating
the Mamba framework into MIL, as illustrated in Fig. 1. Inheriting the attributes
of Mamba, MambaMIL enables each instance to interact with any of the previ-
ously scanned instances through a compressed hidden state, effectively reducing
the computation complexity.

Specifically, given a WSI, we partition the tissue regions into a sequence
of L patches {p1, p2, ..., pL}, followed by mapping all the patches into instance
features X ∈ RL×D by Feature Extractor, where D refers to the feature dimen-
sion. Subsequently, the input X is passed through Linear Projection to reduce
the dimension. The output is then fed into a series of stacked SR-Mamba mod-
ules, which are responsible for modeling long sequences. Finally, we utilize the
Aggregation module to obtain bag-level representations for downstream tasks.

2.3 Sequence Reordering Mamba

To tackle the restricted receptive fields, we devise the Sequence Reordering
Mamba (SR-Mamba) aware of the order and distribution of instances, which
exploits the inherent valuable information embedded within the instances. As
illustrated in Fig. 1, considering the scattered and scarce positive patches, we
establish parallel SSM-based branches upon vanilla Mamba to enhance long se-
quence modeling. SR-Mamba models two long sequences with distinct sequence
orderings, each associated with a unique compressed hidden state, facilitating
the learning of more discriminative features.

In detail, given instance featuresX ∈ RL×D, we first partition the sequence of
instances into non-overlapping segments of sizeR, and obtainN = L/R segments



MambaMIL 5

New Ordering

… …

𝑅

𝑁 = 	
𝐿
𝑅

𝐿

…

𝑅

𝐿

…

𝑁

Reshape Reorder

Sequence Reordering Operation

Original Ordering

Fig. 2: Illustration of Sequence Reordering Operation.

from the entire sequence. For sequences whose lengths are not divisible by R,
we pad them with zeros for subsequent reordering. Then the X is fed into two
independent branches. For the first branch, we preserve the original ordering of
X, which is fed to the subsequent Casual Convolution Layer and State Space
Model (SSM) for sequence modeling. The entire process can be formulated as:

X ′ = Norm(X), Y = SSM(SiLU(Conv1D(Linear(X ′))). (5)

Then the X is also used to generate the gating value for Y obtained from SSM,

Z = SiLU(Linear(X ′)), X ′′ = Z ⊙ Y. (6)

For the second branch, we propose a Sequence Reordering operation as the
core component of SR-Mamba. Specifically, the input instance features are re-
shaped into a 2-D feature map, X ∈ RL×D −→ X ′ ∈ RR×N×D. We then sample
instances from each non-overlapping segment successively along the second di-
mension of X ′, which can be regarded as a permutation and rearrangement
operation. By performing this, we generate the instance features Xr with the
new ordering, which can be utilized to embed more discriminative features by
the inherent position-sensitive characteristic of Mamba. The entire Sequence Re-
ordering operation is depicted in Fig. 2. Then we utilize the subsequent Casual
Convolution Layer and State Space Model to model Xr,

X ′
r = Norm(X ′

r), Yr = SSM(SiLU(Conv1D(Linear(X ′
r))). (7)

For the enhanced X ′
r, we rearrange the sequences into the original ordering

through partitioning and permutation operations, and gate the feature by Z,

Y ′
r = ψ(Yr), X ′′

r = Z ⊙ Y ′
r , (8)

where ψ denotes Sequence Restoration operation. After modeling the long se-
quences with distinct orderings, we can obtain two discriminative instance fea-
tures X ′′ and X ′′

r , and aggregate them to obtain Xoutput. We devise the aggre-
gation operation as an element-wise addition of the two features,

Xoutput = Linear(X ′′ +X ′′
r ) +X. (9)
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Table 1: Survival Prediction results on seven main datasets.

Method
Dataset BLCA BRCA COADREAD KIRC KIRP LUAD STAD MEAN

ResNet-50

Max-Pooling 0.531±0.055 0.570±0.047 0.555±0.090 0.616±0.038 0.530±0.105 0.553±0.085 0.577±0.072 0.562
Mean-Pooling 0.595±0.067 0.602±0.057 0.592±0.109 0.660±0.039 0.691±0.073 0.602±0.045 0.595±0.059 0.620
ABMIL [12] 0.565±0.060 0.612±0.059 0.624±0.046 0.677±0.057 0.707±0.099 0.626±0.054 0.629±0.061 0.635

CLAM-MB [15] 0.571±0.009 0.633±0.035 0.601±0.023 0.596±0.003 0.679±0.037 0.608±0.018 0.582±0.014 0.610
DSMIL [14] 0.593±0.018 0.609±0.060 0.628±0.059 0.682±0.042 0.722±0.085 0.624±0.057 0.609±0.057 0.638

DTFDMIL [23] 0.552±0.053 0.626±0.037 0.638±0.034 0.687±0.075 0.724±0.102 0.623±0.048 0.619±0.073 0.638
TransMIL [17] 0.623±0.037 0.632±0.029 0.624±0.014 0.684±0.052 0.747±0.082 0.641±0.049 0.629±0.020 0.654

S4MIL [6] 0.624±0.018 0.641±0.057 0.608±0.049 0.691±0.039 0.689±0.061 0.622±0.026 0.613±0.044 0.641
MambaMIL 0.652±0.028 0.675±0.065 0.671±0.066 0.721±0.045 0.748±0.094 0.653±0.059 0.639±0.076 0.680

PLIP

Max-Pooling 0.540±0.050 0.611±0.053 0.599±0.070 0.645±0.045 0.620±0.154 0.565±0.076 0.578±0.044 0.594
Mean-Pooling 0.599±0.039 0.603±0.060 0.674±0.064 0.669±0.065 0.766±0.063 0.617±0.048 0.603±0.052 0.647
ABMIL [12] 0.571±0.041 0.607±0.036 0.641±0.013 0.643±0.077 0.772±0.065 0.570±0.066 0.573±0.037 0.625

CLAM-MB [15] 0.600±0.029 0.619±0.025 0.628±0.031 0.597±0.022 0.722±0.063 0.603±0.026 0.593±0.020 0.623
DSMIL [14] 0.589±0.052 0.613±0.033 0.640±0.048 0.673±0.048 0.768±0.074 0.565±0.074 0.601±0.059 0.636

DTFDMIL [23] 0.568±0.040 0.616±0.020 0.625±0.061 0.702±0.034 0.772±0.096 0.624±0.032 0.624±0.032 0.647
TransMIL [17] 0.586±0.059 0.611±0.065 0.620±0.031 0.673±0.030 0.798±0.063 0.622±0.036 0.630±0.067 0.649

S4MIL [6] 0.625±0.023 0.614±0.051 0.657±0.065 0.695±0.026 0.799±0.055 0.635±0.056 0.637±0.063 0.666
MambaMIL 0.677±0.053 0.651±0.029 0.698±0.063 0.715±0.049 0.805±0.051 0.652±0.027 0.653±0.253 0.693

Distinct from the original Mamba, we maintain the sequential ordering and
distribution, while generating new ordering of the instances from a global per-
spective for feature re-embedding. Building upon the vanilla Mamba, SR-Mamba
is tailored to robustly comprehend and perceive lengthy sequences of instances
that are partitioned from WSIs. Built on stacked SR-Mamba modules, Mam-
baMIL is capable of modeling long-range dependencies with linear complexity,
resulting in effective model generalization.

3 Experiments

3.1 Datasets and Evaluation Metrics

To verify the effectiveness of our proposed MambaMIL, we conduct thorough
experiments on nine datasets using two distinct feature sets: ResNet-50 [10] pre-
trained with ImageNet [5] and PLIP [11] pre-trained with OpenPath.
Survival Prediction. We conduct comprehensive experiments on seven public
cancer datasets (BLCA, BRCA, COADREAD, KIRC, KIRP, LUAD, and
STAD) from TCGA, containing WSIs annotated with survival outcomes. To
reduce the impact of data split on model evaluation, we implement a 5-fold cross-
validation approach, partitioning the data into training and validation subsets
in a 4:1 ratio. We use the cross-validated Concordance Index (C-Index), along
with its standard deviation (std), to assess the model’s effectiveness.
Cancer Subtyping. We perform comparative experiments on two public chal-
lenging datasets: BRACS [2] and NSCLC. To ensure the robust evaluation of
comparison experiments, we employ 10-fold Monte Carlo cross-validation, which
partitions the data into training, validation, and testing sets with a ratio of
8:1:1. Additionally, for fair comparisons with existing methods, we also perform
experiments on the official split of the BRACS dataset, marked as ⋆ in Table 2.
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Table 2: Cancer Subtyping results on two main datasets.

Method
Dataset BRACS-7⋆ BRACS-7 NSCLC-2 MEAN

AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-50

Max-Pooling 0.630 0.241 0.707±0.053 0.389±0.066 0.943±0.019 0.869±0.017 0.760 0.500
Mean-Pooling 0.658 0.299 0.729±0.039 0.396±0.060 0.913±0.041 0.837±0.037 0.767 0.511
ABMIL [12] 0.715 0.230 0.765±0.041 0.393±0.084 0.938±0.025 0.864±0.036 0.806 0.495

CLAM-MB [15] 0.729 0.379 0.780±0.043 0.457±0.073 0.933±0.027 0.851±0.022 0.814 0.563
DSMIL [14] 0.751 0.333 0.768±0.045 0.452±0.059 0.940±0.024 0.880±0.023 0.820 0.555

DTFDMIL [23] 0.753 0.390 0.758±0.057 0.448±0.049 0.928±0.055 0.835±0.031 0.813 0.558
TransMIL [17] 0.613 0.310 0.699±0.040 0.363±0.073 0.937±0.019 0.846±0.044 0.750 0.506

S4MIL 0.718 0.356 0.760±0.028 0.422±0.095 0.914±0.036 0.829±0.039 0.797 0.536
MambaMIL 0.773 0.460 0.804±0.028 0.506±0.050 0.959±0.027 0.891±0.044 0.845 0.619

PLIP

Max-Pooling 0.652 0.230 0.720±0.035 0.365±0.072 0.941±0.020 0.869±0.025 0.771 0.488
Mean-Pooling 0.649 0.333 0.744±0.030 0.454±0.053 0.924±0.020 0.849±0.017 0.772 0.545
ABMIL [12] 0.699 0.333 0.797±0.038 0.487±0.074 0.944±0.015 0.867±0.034 0.813 0.562

CLAM-MB [15] 0.693 0.264 0.780±0.038 0.469±0.073 0.944±0.018 0.864±0.033 0.806 0.532
DSMIL [14] 0.667 0.333 0.771±0.037 0.478±0.079 0.933±0.020 0.860±0.022 0.790 0.557

DTFDMIL [23] 0.697 0.368 0.799±0.039 0.486±0.040 0.945±0.023 0.839±0.059 0.814 0.564
TransMIL [17] 0.688 0.345 0.705±0.028 0.328±0.070 0.928±0.021 0.848±0.035 0.774 0.506

S4MIL [6] 0.676 0.299 0.776±0.046 0.469±0.062 0.935±0.019 0.856±0.027 0.796 0.541
MambaMIL 0.718 0.379 0.803±0.040 0.498±0.073 0.947±0.020 0.870±0.037 0.822 0.582

Following the standard setting, we adopt the Area Under Curve (AUC) and Ac-
curacy (ACC) metrics along with their standard deviation (std) for evaluation,
which provides a reliable assessment which is less sensitive to class imbalance.

3.2 Implementation Details

We present the experimental results of our MambaMIL on nine datasets, in
comparison to the following methods: (1) conventional pooling methods, includ-
ing Mean Pooling and Max Pooling; (2) ABMIL [12] and three distinct variants,
including CLAM-MB [15], DSMIL [14] and DTFDMIL [23]; (3) the Transformer-
based TransMIL [17]; (4) the SSM-based S4MIL [6]. Following common settings,
we adopt the same data pre-processing as in the CLAM [15] and set a learning
rate of 2×10−4 for these methods to ensure optimal results and enable fair com-
parisons. In contrast, to mitigate the randomness introduced by atomic opera-
tions in the SR-Mamba module during back-propagation, we implement distinct
learning rates for training for different datasets, detailed hyper-parameters can
be found in the Appendix. The special adjustment aims to diminish the effect of
gradient disparities on convergence, thereby ensuring stability and reproducibil-
ity.

3.3 Comparison Results

Survival Prediction. As presented in Table 1, we conduct comparison ex-
periments with two distinct feature settings on seven TCGA cancer datasets.
The results demonstrate that MambaMIL achieves the best performance on all
benchmarks compared to the state-of-the-art methods. Under the two feature
sets, MambaMIL outperforms the second-best performance method by 2.6% and
2.7% on mean performance across all seven datasets.
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Table 3: Performance comparisons with different variations of Mamba.

Method
Dataset BLCA BRCA COADREAD KIRC KIRP LUAD STAD MEAN

ResNet-50

Mamba 0.622±0.053 0.664±0.034 0.650±0.066 0.700±0.058 0.734±0.062 0.643±0.027 0.621±0.056 0.662
Bi-Mamba 0.647±0.024 0.675±0.065 0.662±0.058 0.690±0.048 0.737±0.052 0.628±0.059 0.622±0.068 0.665
SR-Mamba 0.652±0.028 0.673±0.063 0.671±0.066 0.721±0.064 0.748±0.094 0.653±0.059 0.639±0.076 0.680
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Fig. 3: The performance comparison between TransMIL and our proposed Mam-
baMIL on the BRCAS validation set throughout the training process.

Cancer Subtyping. Table 2 shows experimental results on two datasets, encom-
passing both binary and multiple classification tasks. Compared to the state-of-
the-art, our proposed MambaMIL demonstrates outstanding performance, at-
taining an AUC of 80.4% on the BRACS dataset and 95.9% on the NSCLC
dataset. Notably, MambaMIL employs the same aggregation module as ABMIL
but significantly outperforms it, with significant improvements of 3.9% and 2.1%
in terms of AUC for BRACS and NSCLC datasets, respectively.

3.4 Ablation Study

To assess the effectiveness of SR-Mamba, we conduct extensive experiments to
compare the performance of different variations of Mamba block: the vanilla
Mamba [7], Bidirectional Mamba (BiMamba) [25] and Our SR-Mamba, on sur-
vival prediction datasets. For a fair comparison of each specific dataset, we uti-
lize the same setting to train these variants. As shown in Table 3, SR-Mamba
surpasses the performance of Mamba and Bi-Mamba, which demonstrates the
effectiveness of sequence reordering. Meanwhile, overfitting poses a substantial
challenge in applying MIL methods for WSI analysis, especially for transformer-
based methods like TransMIL. As illustrated in Fig. 3, during the training pro-
cess, TransMIL displays clear signs of overfitting on the validation set, charac-
terized by a significant increase in validation loss alongside decreases in both the
ACC and the AUC metrics. In contrast, MambaMIL exhibits stable performance
across the evaluation period, showcasing its strong ability to alleviate overfitting.
This capability originates from the more discriminative representations extracted
from various sequence orderings, akin to the effects of data augmentation, which
significantly enhances model robustness.
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4 Conclusion

In this paper, we introduce a novel Mamba-based MIL method (MambaMIL)
to tackle the challenges associated with long sequence modeling and overfit-
ting, marking the first application of the Mamba framework in computational
pathology. Our approach, based on the specially designed Sequence Reorder-
ing Mamba module, enables the effective leveraging of intrinsic global informa-
tion contained within the long sequences of instances. The experimental results
on nine benchmarks demonstrate that MambaMIL benefits from long sequence
modeling and outperforms existing competitors. Given the excellent performance
of MambaMIL, we anticipate its application can be extended to other modalities
in computational pathology, including genomics, pathology reports, and clinical
data. This expansion would enable the leveraging of multi-modal information for
effective and accurate diagnosis, prognosis, and therapeutic-response prediction.
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