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Abstract. In the study of skin lesion segmentation, models based on convolution 
neural networks (CNN) and vision transformers (ViT) have been extensively ex-
plored but face challenges in capturing fine details near boundaries. The advent 
of Diffusion Probabilistic Model (DPM) offers significant promise for this task 
which demands precise boundary segmentation. In this study, we propose 
BGDiffSeg, a novel skin lesion segmentation model utilizing a wavelet-trans-
form-based diffusion approach to speed up training and denoising, along with 
specially designed Diffusion Boundary Enhancement Module (DBEM) and In-
teractive Bidirectional Attention Module (IBAM) to enhance segmentation accu-
racy. DBEM enhances boundary features in the diffusion process by integrating 
extracted boundary information into the decoder. Concurrently, IBAM facilitates 
dynamic interactions between conditional and generated images at the feature 
level, thus enhancing the global recognition of target area boundaries. Compre-
hensive experiments on the ISIC 2016, ISIC 2017, and ISIC 2018 datasets 
demonstrate BGDiffSeg's superiority in precision and clarity under limited com-
putational resources and inference time, outperforming existing state-of-the-art 
methods. Our code will be available at https://github.com/erlingzz/BGDiffSeg. 
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1 Introduction 

Malignant melanoma is one of the fastest-growing cancers globally, with an estimated 
97,610 new cases in the US in 2023 alone [1]. Accurate and rapid segmentation of these 
lesions is critical for early detection and treatment planning, making precision in auto-
mated skin lesion segmentation imperative. The task is challenging as lesions in skin 
images are often obscured by natural artifacts like hair and blood vessels, as well as 
artificial ones like surgical markings, which can closely resemble the texture, color, and 
shape of lesions. Moreover, low contrast and indistinct boundaries make it difficult to 
distinguish lesions from healthy skin. Accurately locating skin lesion areas and pre-
cisely predicting clear lesion boundaries are crucial. As deep learning evolves, neural 
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network models, from convolution neural networks (CNN) to the recent vision trans-
formers (ViT) [2], have advanced medical image segmentation. UNet [3], known for 
its stellar performance and efficient CNN-based design, is widely used in medical im-
aging. Its extensibility has led to enhancements like UNet++ [4], AttentionUNet [5] and 
3D-UNet [6]. TransUNet [7] uses ViT for encoding and CNN for decoding, showing 
great global information capture ability in medical image segmentation. Similarly, 
MedT [8] leverages a transformer-based encoder and adds control within self-attention 
for impressive results. Swin-UNet [9] combines Swin Transformer with the UNet struc-
ture, introducing a fully transformer-based model using self-attention within shifting 
windows. CTO [10] employs a combination of CNN, ViT and a boundary detection 
operator to achieve high accuracy. However, these methods exhibit inherent limitations. 
CNN-based approaches suffer from detail loss due to downsampling and upsampling, 
particularly affecting fine features near boundaries, leading to boundary misalignments. 
Similarly, ViT-based methods, constrained by fixed windows, struggle to capture the 
fine contextual details necessary for precise pixel-level segmentation. These shortcom-
ings necessitate the development of a new medical image segmentation architecture, 
designed to segment skin lesions with greater accuracy and clarity. 

Recently, Diffusion Probabilistic Models (DPMs) [11] have attracted considerable 
attention for their superior performance [12][13][14][15]. Inspired by DPMs, we find 
their particular suitability for skin lesion segmentation tasks that demand precise and 
clear boundary predictions. Unlike CNNs and Transformers, DPMs model the evolu-
tion of lesion boundaries as a parameterized process, which aids in learning the distri-
bution of the target for clearer segmentation. Moreover, DPMs perform denoising at 
the original image size, effectively avoiding boundary shifts caused by downsampling 
and upsampling in CNNs. Utilizing these unique characteristics, we aim to employ dif-
fusion models for tackling the challenges of skin lesion segmentation. Although studies 
like MedSegDiff [16] have begun exploring diffusion models in medical image seg-
mentation, their slow training, lengthy inference time, and suboptimal accuracy limit 
their clinical applicability in dynamic and real-time settings. Thus, achieving precise 
and clear lesion segmentation with limited computational resources and inference time 
remains a significant challenge. 

In this study, we propose BGDiffSeg, a diffusion model-based skin lesion segmen-
tation model to address the challenges of speed, inference time, and accuracy in existing 
diffusion models for medical image segmentation, demonstrating its potential for dy-
namic, real-time, and precise segmentation. To enhance training speed and reduce in-
ference time for segmentation tasks, we utilize a wavelet transform-based diffusion ap-
proach, named WaveDiff [17]. To improve segmentation accuracy, we specifically de-
sign two key modules: the Diffusion Boundary Enhancement Module (DBEM) and the 
Interactive Bidirectional Attention Module (IBAM). On one hand, DBEM is proposed 
to enhance the boundary features of the lesion area generated by the diffusion model. 
Specifically, it extracts low-frequency information from the conditional encoder to re-
duce high-frequency noise interference and employs the Sobel operator for boundary 
extraction. This extracted boundary information is then integrated into the diffusion 
model’s decoder to refine the prediction of lesion boundaries. On the other hand, IBAM 
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is proposed to enhance global recognition of target area boundaries. Specifically, it fos-
ters interactions between the generative encoder and the conditional encoder, enables 
dynamic feature-level interaction between conditional and generated images, and 
makes the most of features at various levels to enhance global boundary recognition. 
By combining the aforementioned modules with the baseline diffusion model, we pro-
pose BGDiffSeg and conduct extensive experiments on multiple skin lesion segmenta-
tion datasets, including ISIC 2016 [18][19], ISIC 2017 [20][21], and ISIC 2018 
[22][23]. The results demonstrate that BGDiffSeg can segment lesion boundaries more 
accurately within limited resources and inference time, achieving state-of-the-art per-
formance in various skin lesion segmentation tasks. 

In summary, our contributions are as follows: 1) We propose BGDiffSeg, a skin 
lesion segmentation model based on the diffusion model that utilizes a wavelet-trans-
form-based denoising generative adversarial approach, combined with DBEM and 
IBAM, for more precise segmentation of skin lesions with limited resources and infer-
ence time. 2) We specifically design DBEM and IBAM, where DBEM enhances bound-
ary features of target areas generated during the diffusion process, and IBAM improves 
global recognition of target area boundaries. 3) We conduct extensive experiments, 
which demonstrate the effectiveness of our methods in achieving state-of-the-art per-
formance. 

2 Preliminaries 

Current studies have demonstrated the immense potential of DPMs in image tasks, yet 
their extensive training and sampling times restrict real-time applications. To speed up 
both training and sampling, we adopt WaveDiff [17]. Given an input image 
𝑥 ∈ 𝑅1×𝐻×𝑊, it is decomposed into a set of low and high subbands, which are then 

concatenated to form a matrix 𝑦 ∈ 𝑅4×
𝐻

2
×

𝑊

2 , effectively reducing the network's compu-
tational load by decreasing spatial dimensions fourfold. 

The forward diffusion process gradually adds noise to the data 𝑥0 ∼ 𝑞(𝑥0) in T steps 
with pre-defined variance schedule 𝛽𝑡: 

 𝑞(𝑥1:𝑇|𝑥0) = ∏ 𝑞(𝑥𝑡|𝑥𝑡−1)𝑡≥1 ,         𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼) (1) 

where 𝑞(𝑥0) is a data-generating distribution, and 𝐼 is the identity matrix. 
Compared to DPM's unimodal distribution, WaveDiff models the denoising distri-

bution as a complex multimodal one, reducing sampling steps while maintaining high 
generative quality. Specifically, it uses conditional generative adversarial networks 
(GANs) to approximate the true denoising distribution: 

 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = ∫ 𝑝(𝑧)𝑞(𝑥𝑡−1|𝑥𝑡 , 𝑥0 = 𝐺𝜃 (𝑥𝑡 , 𝑧, 𝑡))𝑑𝑧 (2) 

where 𝑝𝜃  (x𝑡−1|x𝑡)  denotes the implicit distribution imposed by the generator 
𝐺𝜃 (x𝑡 , 𝑧, 𝑡) that outputs x0, given x𝑡 and a latent variable 𝑧 ∼  𝑝(𝑧): = 𝒩(𝑧;  0, 𝐼). 
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3 BGDiffSeg 

Using the diffusion model introduced in preliminaries as our foundational framework, 
we focus on overcoming artifacts and blurred lesion boundaries in skin disease images. 
To achieve this, we specifically design the DBEM and the IBAM, collectively estab-
lishing BGDiffSeg. The comprehensive framework is depicted in Fig. 1. 

Fig. 1. The overall architecture of BGDiffSeg 

3.1 Diffusion Boundary Enhancement Module (DBEM) 

In our diffusion model, we meticulously design the Diffusion Boundary Enhancement 
Module (DBEM) inspired by [10], illustrated in Fig. 1, to enhance boundary features of 
skin lesions. The process begins with extracting features from the conditional encoder. 
To counteract the interference caused by high-frequency noise in the images, we first 
apply a wavelet transform to these features, isolating the low-frequency information 
that more closely represents the primary structure of the image. Following this, the So-
bel operator is employed to extract boundary information from each low-frequency sub-
band in both the horizontal 𝐺𝑥 and vertical 𝐺𝑦 directions, with the horizontal and verti-
cal Sobel kernels defined as follows: 

 𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

]  (3) 

For each pixel, gradients in the horizontal and vertical directions are calculated. These 
gradients are combined to calculate the total gradient magnitude as follows: 

 𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (4) 
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After calculating the total gradient magnitude, we fuse it with the input feature map 
through element-wise multiplication to enhance boundary features. Subsequently, a 
simple convolution layer merges these enhanced features at various levels. The final 
enhanced feature is then multiplied with features from skip connections, improving the 
decoder-generated feature representation for more accurate image segmentation. 

3.2 Interactive Bidirectional Attention Module (IBAM) 

While traditional image generation tasks typically involve unidirectional information 
flow from conditional to generative encoding, we recognize that while the original im-
age contains precise segmentation targets, they often blend with the background. More-
over, intermediate segmentation maps, although highlighting target areas, can some-
times inaccurately include non-target regions. To dynamically focus the model on le-
sion-relevant features and suppress potentially misleading artifacts, IBAM is devel-
oped, as shown in Fig. 1. This module facilitates feature-level interactions between con-
ditional and generated images and fosters interactions between two encoders. It lever-
ages multi-level features to enhance the model's ability to accurately identify and pro-
cess subtle structural differences in medical images, thereby improving global recogni-
tion of target area boundaries. IBAM features a focused linear attention module [24], 
with a novel mapping function  𝑓𝑝 for adjusting query and key features, and a depthwise 
convolution (DWC) module to increase feature diversity, achieveing high expressive-
ness with linear complexity. The focused linear attention module can be written as: 

 𝑂 = 𝑆𝑖𝑚 (𝑄, 𝐾) 𝑉 = ∅𝑝(𝑄)∅𝑝(𝐾)𝑇𝑉 + 𝐷𝑊𝐶(𝑉)  (5) 

𝑤ℎ𝑒𝑟𝑒 ∅𝑝(𝑥) = 𝑓𝑝 (𝑅𝑒𝐿𝑈(𝑥)) ,  𝑓𝑝(𝑥) =  
∥𝑥∥

∥𝑥∗∗𝑝∥
𝑥∗∗𝑝   (6) 

and 𝑥∗∗𝑝  represents element-wise power 𝑝  of 𝑥 . IBAM consists of two parallel 
branches, one for refined conditional encoding and the other for refined generative en-
coding. Specifically, we pair intermediate layer features 𝑚𝐼 and  𝑚𝑥 from each encoder 
to calculate query, key, and value vectors respectively. In the generative encoding at-
tention branch, we propose calculating cross-attention between 𝑚𝐼  and 𝑚𝑥 , with 𝑚𝐼 
serving as the query matrix and 𝑚𝑥 acting as both key and value matrices, followed by 
a residual connection to enhance the output. The calculation can be written as: 

 𝑚𝑥 =  𝐹𝐿𝑀𝐻𝐶𝐴𝑥  (𝑚𝐼 , 𝑚𝑥, 𝑚𝑥) + 𝑚𝑥  (7) 

where 𝐹𝐿𝑀𝐻𝐶𝐴𝑥 stands for the focused linear multi-head cross-attention in the gener-
ative encoding branch. A similar method is employed in the conditional encoding 
branch, as follows: 

 𝑚𝐼 =  𝐹𝐿𝑀𝐻𝐶𝐴𝐼(𝑚𝑥, 𝑚𝐼 , 𝑚𝐼) + 𝑚𝐼 (8) 
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3.3 Loss Function 

We employ the Least Squares GAN (LSGAN) loss function to train the diffusion dis-
criminator in order to prevent gradient vanishing. The diffusion discriminator, denoted 
as 𝐷𝑑(𝑥𝑡−1, 𝑥𝑡 , 𝑡),  is trained to minimize this loss: 

ℒ𝑑𝑖𝑓𝑓 = ∑ 𝔼𝑞(𝑥𝑡)𝔼𝑞(𝑥𝑡−1|𝑥𝑡)[(𝐷𝑑(𝑥𝑡−1, 𝑥𝑡 , 𝑡) −  1)2]  

𝑡≥1

 

+ 𝔼𝑝𝜃(𝑥𝑡−1|𝑥𝑡)𝔼𝑞(𝑥𝑡−1|𝑥𝑡) [𝐷𝑑(𝑥𝑡−1, 𝑥𝑡 , 𝑡)2]  (9) 

where 𝑡 represents the diffusion time step index. Additionally, we utilize the 𝐷𝑖𝑐𝑒 loss 
function to supervise the boundaries for more precise boundary information: 

 ℒ𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝐷𝑖𝑐𝑒(𝑦, 𝑦̂) (10) 

Therefore, our loss function can be expressed as follows: 

 ℒ = ℒ𝑑𝑖𝑓𝑓 + ℒ𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦   (11) 

4 Experiments 

4.1 Datasets and Implementation Details 

We evaluate our model, BGDiffSeg, using three public skin lesion segmentation da-
tasets: ISIC2016 [18][19], ISIC2017 [20][21], and ISIC2018 [22][23]. For ISIC2016, 
we use the default dataset partitioning method. For ISIC2017 and ISIC2018, datasets 
are split into training and testing sets at a 7:3 ratio. We resize all the images to a reso-
lution of 256 × 256 and apply various data augmentation, including horizontal flipping, 
vertical flipping, and random rotation. Adam [25] is utilized as the optimizer, initialized 
with a learning rate of 0.1 and the CosineAnnealingLR [26] is employed as the sched-
uler with a minimum learning rate of 1e-5. A total of 200 epochs are trained with a 
batch size of 8. To evaluate our method, we employ Mean Intersection over Union 
(mIoU), Dice similarity score (DSC) as metrics. All the experiments are conducted us-
ing a NVIDIA RTX TITANX GPU with 12 GB RAM. 

4.2 Comparative Results 

We compare BGDiffSeg with widely-used medical image segmentation methods on 
several skin lesion segmentation datasets, using the same experimental protocol for 
each dataset to ensure fairness. For a fair comparison with MedSegDiff, we retrain it 
for 200,000 steps. The results, listed in Table 1, show BGDiffSeg outperforming all 
other methods across these datasets, demonstrating its effectiveness and generalizabil-
ity. Fig. 2 offers a clearer visual representation of these results, with our model accu-
rately predicting lesion boundaries closer to the ground truth, as opposed to others that 
either over-segment (e.g., MedT) or under-segment (e.g., TransUnet). 
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Fig. 2. Qualitative comparisons on ISIC2017 dataset (row 1) and ISIC2018 dataset (row 2) 

Table 1. Comparative experimental results on the ISIC2017, ISIC2018 and ISIC2016(Bold in-
dicates the best.) 

Dataset Model mIoU(%) DSC(%) 
 
 
 
 
ISIC2017 

UNet [3] 76.98 86.99 
UTNetV2 [27] 77.35 87.23 
TransUNet [7] 78.42 87.90 
MedT [8] 76.55 86.72 
Fat-Net [28] 78.36 87.86 
UNeXt [29] 76.57 86.74 
MedSegDiff [16] 73.41 84.67 
BGDiffSeg(ours) 79.73 88.72 

 

 

 

 

 

ISIC2018 

UNet [3] 77.86 87.55 

UNet++ [4] 78.31 87.83 
Att-UNet [5] 78.43 87.91 
UTNetV2 [27] 78.97 88.25 
TransUNet [7] 79.74 88.73 
MedT [8] 76.96 86.98 
Fat-Net [28] 79.74 88.73 
UNeXt [29] 78.01 87.64 
MedSegDiff [16] 74.71 85.52 
BGDiffSeg(ours) 80.22 89.02 

 

 

 

 

ISIC2016 

UNet [3] 80.25 87.81 

UNet++ [4] 81.84 88.93 
Att-UNet [5] 79.70 87.43 
TransUNet [7] 84.89 91.26 
MedT [8] 83.35 90.92 
UNeXt [29] 84.32 91.49 
MedSegDiff [16] 81.97 89.81 
BGDiffSeg(ours) 85.52 92.19 

 nput  r ound ruth  rans  e t  e d  at et   e  t  e d e  if f ours
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Additionally, we compare the training resources and sampling times required by 
MedSegDiff and BGDiffSeg during the training process, as shown in Table 2. The table 
reveals that our BGDiffSeg requires fewer GPU resources and FLOPs calculations. 
Moreover, while MedSegDiff takes approximately 85.5s to sample and generate a seg-
mentation map, BGDiffSeg requires only about 0.2s, making it significantly faster than 
MedSegDiff by a factor of over 400 times. 

Table 2. Comparison of training resources and sampling time between MedSegDiff and BGDiff-
Seg (Bold indicates the best.) 

Model Params(M)↓ FLOPs(G)↓ MEM(G)↓ Time(s)↓ 
MedSegDiff 129.34 2083.06 25.03 85.51 
BGDiffSeg(ours) 34.37 309.78 5.18 0.23 

4.3 Ablation Results 

We conduct extensive ablation experiments on the ISIC2017 dataset to validate the ef-
fectiveness of our proposed modules, with results shown in Table 3. Our baseline 
model, based on Wavediff, integrates features from the conditional encoder and the 
generative encoder via direct addition, as shown in Table 3(a). The ablation on IBAM, 
shown in Table 3(b), indicates a significant performance boost with the addition of 
IBAM, enhancing interaction between the two encoders and increasing mIoU and DSC 
by 2.67% and 1.7%, respectively. To validate the necessity of the bidirectional infor-
mation flow between encoders, we remove the branch that integrates generative encod-
ing into conditional encoding within IBAM. This deletion significantly reduces IBAM's 
effectiveness, underscoring the importance of this key design. Table 3(c) outlines the 
ablation on DBEM. Adding DBEM, which focuses on boundary features enhancement, 
notably improves performance, raising mIoU and DSC by 1.6% and 1.03%. Moreover, 
removing low-frequency feature extraction within DBEM leads to a performance drop, 
confirming that high-frequency noise interferes with boundary detection and validating 
the effectiveness of our key designs. 

Table 3. Our ablation studies on the ISIC2017 dataset cover: (a) the result of baseline, (b) the 
ablation on IBAM, and (c) the ablation on DBEM. 

Type Model mIoU(%) DSC(%) 
(a) Baseline 75.88 86.28 
(b) Baseline + IBAM 78.55 87.98 
 w/o generative encoding attention branch 77.29 87.19 

(c) Baseline + DBEM 77.48 87.31 
 w/o wavelet transform 77.21 87.14 
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5 Conclusions 

In this paper, we propose BGDiffSeg, a new fast diffusion-based skin lesion segmenta-
tion model. Leveraging WaveDiff, alongside innovations like the Diffusion Boundary 
Enhancement Module (DBEM) and Interactive Bidirectional Attention Module 
(IBAM), BGDiffSeg generates precise segmentation masks with limited computational 
resources and time. Extensive experiments demonstrate its superiority quantitatively 
and qualitatively, highlighting its potential to enhance subsequent tasks in an end-to-
end manner. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 
the content of this article. 
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