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Abstract. Selecting an optimal standard plane in prenatal ultrasound
is crucial for improving the accuracy of AI-assisted diagnosis. Existing
approaches, typically dependent on detecting the presence of anatomical
structures as defined by clinical protocols, have been constrained by a
lack of consideration for image perceptual quality. Although supervised
training with manually labeled quality scores seems feasible, the sub-
jective nature and unclear definition of these scores make such learning
error-prone and manual labeling excessively time-consuming. In this pa-
per, we present an unsupervised ultrasound image quality assessment
method with score consistency and relativity co-learning (CRL-UIQA).
Our approach generates pseudo-labels by calculating feature distribution
distances between ultrasound images and high-quality standard planes,
leveraging consistency and relativity for training regression networks in
quality prediction. Extensive experiments on the dataset demonstrate
the impressive performance of the proposed CRL-UIQA, showcasing ex-
cellent generalization across diverse plane images.

Keywords: Unsupervised Learning · Image Quality Assessment · Ul-
trasound Image.

1 Introduction

Ultrasound (US) is the primary method for assessing fetal health in prenatal
screening due to its low cost and absence of harmful radiation [4]. The prenatal
US examination typically includes four procedures: probe scanning, standard
plane selection, growth parameter measurement and diagnosis. Among these
procedures, the standard plane is crucial as it is the US image containing key
anatomical structures (KASs) [21]. Any incorrect or unclear standard planes
may result in limitations on the precision of measurements and diagnosis [19].
For example, measurement of abdomen and head circumference based on fetal
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thalamic standard plane and fetal abdomen standard plane can be used to es-
timate gestational age and fetal weight [1, 6, 8], and fetal four-chambered heart
(4CH) standard plane is the most basic and important plane in fetal cardiac
examination [11, 9].

Some researchers attempted to use artificial intelligence (AI) for the intelli-
gent processing of prenatal US examination to reduce the burden on sonogra-
phers, which includes the automatic acquisition of standard planes [15, 5, 3, 17].
Rahmatullah et al. [18] propose to use AdaBoost to recognize the presence of
stomach and umbilical vein to determine the standard plane of fetal abdomen.
Wu et al. [24] utilize a convolutional neural network to classify the presence of
KASs in fetal abdomen planes into four categories and combine the regions of
interest (ROI) using a cumulative scoring approach for quality scoring. Lin et
al. [10] propose to recognize six KASs as well as ROI in the head plane based
on Faster R-CNN and use different weight scores for quality scoring based on
different importance. Dong et al. [7] achieve quality scoring of fetal 4CH planes
by combining image gain, scaling, and KASs.

However, these methods determine the standard plane only by detecting the
presence of KASs in the plane and lack the consideration of image perceptual
quality, which may lead to the use of blurred standard planes, e.g., with unclearly
structures, containing image artifacts, for measurements and diagnosis, which is
contrary to the strict quality requirements for measurements and diagnosis [19].
Therefore, selecting an optimal standard plane (best perceptual image quality)
from a set of standard planes (US images of all KASs presented) is essential
for improving the accuracy of measurement and diagnosis. However, there are
two main challenges for such a task: 1) unclear definition of perceptual quality
makes such dataset labeling easy to be subjective from different experts; 2)
manual labeling requires clinical experts making it excessively time and labor
consuming.

In this paper, we propose a score consistency and relativity co-learning frame-
work (CRL-UIQA) for unsupervised US standard plane image quality assessment
(IQA), outputting continuous perceptual quality scores for any US images. In-
stead of using subjective and unclearly defined score labels for supervised train-
ing, we generate pseudo-labels by calculating feature distribution distances be-
tween US images and a high-quality standard plane set. Then, to encourage the
model to focus on capturing features that are robust and stable across different
perspectives of the same image quality, we propose to employ weakly augmented
views, like horizontal flip, vertical flip, and rotation, and compute the score con-
sistency loss. Such consistency constraint enhances the model’s ability to extract
invariant features related to image quality. In addition, to strengthen the model’s
ability to correlate between different image quality features and quality predic-
tion scores, we propose to use strongly augmented views, such as gaussian blur
and motion blur, and compute the relativity loss. This relativity loss forces the
model to learn to extract features that are closely related to image quality, thus
increasing the model’s sensitivity to changes in quality features. Therefore, by
applying the score consistency and relativity co-learning, our method can adjust
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Fig. 1. The CRL-UIQA framework. Step 1: Construct quality pseudo-labels for the
image dataset using pre-trained classification models and smooth the label distribution.
Step 2: Train quality prediction models using co-learning of score consistency and
relativity under the constraint of pseudo-labels.

the pseudo score to a more proper quality-aware score by forcing the model to
align with human perceptual quality priors, as shown in the bottom right corner
of Figure 1. Our method achieves an accuracy of 0.910 and 0.867 on the 4CH and
abdomen datasets, significantly outperforms existing IQA methods, and shows
a high correlation between quality prediction scores and US images quality.

2 Method

An overview of the proposed method is shown in Fig. 1. First, we compute the
feature distances between the image dataset and the standard plane image set in
a pre-trained US image classification model, and construct quality pseudo-labels
via the Yeo-Johnson transform to improve the normality of the data distribution.
Then, we let the weight-sharing model learn the representations of three views,
which include the source, weakly augmented, and strongly augmented views, and
train a quality prediction model for fetal US images by regressing the quality
pseudo-labels on the source view and by co-learning the consistency of the weakly
augmented view and the relativity of the strongly augmented view.
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2.1 Quality pseudo-label construction

For images sharing the same content yet having different levels of quality, within
the intraclass distribution of features, high-quality images exhibit aggregated
feature embeddings, whereas low-quality images exhibit dispersion around the
boundary [12]. Inspired by this, we adopt the Euclidean distance between the
image dataset and the high-quality standard plane in the feature space distribu-
tion as the basis for constructing the quality pseudo-label. Specifically, we define
the image dataset X = {xi|i = 1, 2, ...,m}, the set of high-quality standard
planes G = {gj |j = 1, 2, ..., n}, where m and n denote the number of images in
the dataset and high-quality standard planes, and the embedding function P (·)
of the pre-trained classification model. Hence, for each image in the dataset, we
compute the distance in feature space with n high-quality standard planes:

Dxi = {dj | < P (xi), P (gj) >, j = 1, 2, ..., n}, (1)

where < · > denotes the Euclidean distance between feature pairs. To avoid bias
caused by chance factors such as outliers in the feature space distribution and to
ensure positive correlation between image quality and quality labels, we further
choose the top-k smallest distance in the sequence Dxi , and compute the quality
pseudo-label as si = −mean(top(Dxi , k)).

Then, in order to avoid the long-tailed distribution of pseudo-labels that
causes the model to tend to optimize for high-frequency labels and ignore the
learning of low-frequency labels, we smooth the label distributions using the
Yeo-Johnson transform [25], which is not subject to any data constraints and
improves the normality of the data distribution. Finally, the pseudo-labels are
regularized in the range of (0, 1), where 1 and 0 denote the pseudo-labels of the
highest and lowest quality images, respectively. Thus, the new quality pseudo-
label qxi

for each image in the dataset is defined as:

Ŝ = Yeo-Johnson(S), (2)

qxi
=

ŝi − min(Ŝ)
max(Ŝ)− min(Ŝ)

, (3)

where S = {si|i = 1, 2, ...,m} and Ŝ = {ŝi|i = 1, 2, ...,m}.

2.2 Score consistency and relativity co-learning

Using the constructed quality pseudo-labels, we can train a model for continuous
quality assessment of fetal US images that is capable of outputting image quality
scores end-to-end and does not rely on the computation of feature distances
between images and high-quality standard planes. Intuitively, we first construct
the following loss function to force the model to learn the quality pseudo-label:

Ld =
1

m

m∑
i=1

(qxi − pxi)
2, (4)
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where pxi
is the image quality model prediction result.

However, considering that the pseudo-labels are not accurate and lack the
consideration of image perceptual quality, the forced fitting of incorrect pseudo-
labels is not sufficient for IQA. Therefore, we further extend each image data into
three views: source view, weakly augmented view and strongly augmented view.
In model training, we require the quality prediction of the source view and the
weakly augmented view to be consistent and ensure that the quality prediction
of the source view is better than that of the strongly augmented view, thus
improving the robustness of the model on perceptual quality comprehending.

Consistency of Weakly Augmented Views To encourage the model to focus
on capturing features that are robust and stable across different perspectives of
the same image quality, we generate weakly augmented views using horizontal
flip, vertical flip, and rotation of the source view that do not change the image
quality, and compute the consistency loss as:

Lc =
1

m

m∑
i=1

(p̂xi
− pxi

)2, (5)

where p̂xi
denotes the quality prediction score for the weakly augmented views.

Relativity of Strongly Augmented Views In order to reduce the error
caused by the deviation of pseudo-labels from the real image quality, we use
different degrees of corruption such as gaussian blur and motion blur for each
source view xi to generate strongly augmented views x

′

i. In this way, we can
construct accurate samples with relativity B = (xi, x

′

i, ϵi), where ϵi represents
the degree of augmentation, and compute the relativity loss, defined as follows:

Lr = max((px′
i
− pxi

) + ϵi, 0), (6)

where pxi and px′
i
denote the quality prediction results for the source and strongly

augmented views, respectively.
Our model is trained in an end-to-end way with total loss defined as follows:

L = α ∗ Ld + θ ∗ Lc + β ∗ Lr, (7)

where α, θ and β are trade-off parameters.
Through the co-learning of consistency and relativity, the proposed CRL-

UIQA framework is able to learn the fetal US image quality features better and
improve the model robustness.

3 Experiments and Results

3.1 Dataset

We obtained ethics committee approval to collect 262 videos of 2D fetal US scans
in the middle and late stages of pregnancy in the same type of US equipment,
where each 2D video was from a different individual.
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Table 1. Ablation study results of our proposed various strategies on the 4CH and
abdomen datasets. Results are reported using quality prediction accuracy mentioned
in Section 3.2.

Pseudo-label Distribution Smoothing Lc Lr
Dataset

4CH Abdomen
✓ 0.857 0.825
✓ ✓ 0.876 0.836
✓ ✓ ✓ 0.901 0.846
✓ ✓ ✓ 0.836 0.819
✓ ✓ ✓ ✓ 0.910 0.867

Specifically, we randomly collect 8696 4CH images and 7619 abdomen images
from 217 videos. We randomly select 6956 images and 6425 images (m) from
the two datasets as the training set, and 1740 images and 1194 images as the
validation set to observe the training status of the model. Subsequently, three
experienced sonographers select 45 (n) high-quality 4CH standard planes and
abdomen standard planes in 25 videos. 477 pairs of 4CH images for the 4CH set
and 488 pairs of abdomen images for the abdomen test set in another 20 videos,
in which each pair of images is clearly defined as to which image has the higher
quality.

Note that each of the above sets does not require manual labeling of image
quality.

3.2 Implementation Details

We implement fetal ultrasound IQA by introducing an additional classification
branch on the backbone of YOLOv5 [22] pretrained for KASs detection, which
utilizes a projection layer to reduce the number of feature map channels and
feeds pooled features into a fully connected layer to output quality scores. Our
approach is implemented on an NVIDIA RTX 3090 24GB GPU using Pytorch.
We set the loss trade-off parameters α, θ and β to 0.05, 0.1, and 0.1, respectively,
train 35 epochs using an SGD optimizer with an initial learning rate of 0.001,
and set the batch size to 16, and use YOLOv5 default parameters for the rest.

For intuitive analysis, we use accuracy as the metric to evaluate the per-
formance of the model. For each pair of US images in the test set, we use the
model to predict the quality scores of both and denote the number of correctly
differentiated high and low qualities as T , the number of errors as F , and the
accuracy is calculated as T

T+F .

3.3 Ablation Study

We experimentally investigate the effects of distribution smoothing, consistency
loss Lc, and relativity loss Lr on model performance, as shown in Table 1. The
accuracy decreases when only Lr is added to the regression training for pseudo-
labels. It is because the introduced strong augmented view increases the sensi-
tivity of the model to feature changes, which reduces the ability of the model
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Fig. 2. Quality prediction results of our method for different views, where (a) is the
source view, (b) are the weakly augmented views with randomized Flip and Rotation
degrees, and (c) are the strongly augmented views with increasing distortion degree
from left to right.

to generalize to different features of the same quality level, but this is improved
by adding Lc. Overall, the addition of the three strategies enables our model to
achieve optimal performance. We show the quality prediction scores of the model
for different views of the US image in Fig. 2, illustrating the effectiveness of score
consistency and relativity co-learning, where our model successfully gives similar
quality scores to the source and weakly augmented views, and lower the quality
score to the strongly augmented view.

3.4 Comparison with Other Algorithms

We compare the proposed CRL-UIQA with the traditional IQA methods NIQE [14],
BRISQUE [13], and MSSIM [23], as well as the learning-based IQA methods
SER-FIQ [20], SDD-FIQA [16], and Weighted score. Weighted score is a scoring
system that we soften the existing standard plane cumulative scoring method
[10, 24] by using structure confidence as weights [2]. SDD-FIQA* is trained in
our framework based on pseudo-labels constructed from SDD-FIQA. Table 2
shows the accuracy of existing IQA methods on US images. BRISQUE, NIQE
and MSSIM use natural scene images to construct statistical features to quantify
losses such as image distortion, which is not applicable to US images, thus re-
sulting in relatively low accuracy. Our method achieves the best results of 0.910
and 0.867 in both the 4CH and abdominal test sets, respectively, illustrating the
excellent performance and outstanding generalization ability of CRL-UIQA.

Fig. 3 shows the quality prediction results of learning-based IQA methods for
different quality US images. Relative to other methods, our CRL-UIQA shows
higher accuracy and displays a high correlation between quality prediction scores
and US image quality. For example, for the second and third images in the first
row of (a), the third image has a higher quality score due to the clear display
of the left atrium and left ventricle as well as less noise, and for the second and
third images in the first row of (b), the second image has a higher quality score
due to the perfect display of the stomach and umbilical vein as well as a more
completed abdominal wall contour.
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Table 2. Comparison with existing quality assessment methods.

BRISQUE
[13]

NIQE
[14]

MSSIM
[23]

SER-
FIQ [20]

SDD-
FIQA* [16]

Weighted
Score

CRL-
UIQA

4CH 0.421 0.497 0.585 0.562 0.702 0.798 0.910
Abdomen 0.498 0.355 0.434 0.537 0.607 0.764 0.867

(a) 4CH image test pairs (b) Abdomen image test pairs

SER-FIQ 0.554SER-FIQ 0.554

SDD-FIQA 0.667SDD-FIQA 0.667

Weighted Score 0.921Weighted Score 0.921

CRL-UIQA 0.636CRL-UIQA 0.636

SER-FIQ 0.426SER-FIQ 0.426

SDD-FIQA 0.521SDD-FIQA 0.521

Weighted Score 0.928Weighted Score 0.928

CRL-UIQA 0.812CRL-UIQA 0.812

SER-FIQ 0.460SER-FIQ 0.460

SDD-FIQA 0.545SDD-FIQA 0.545

Weighted Score 0.922Weighted Score 0.922

CRL-UIQA 0.893CRL-UIQA 0.893

SER-FIQ 0.468SER-FIQ 0.468

SDD-FIQA 0.506SDD-FIQA 0.506

Weighted Score 0.925Weighted Score 0.925

CRL-UIQA 0.612CRL-UIQA 0.612

SER-FIQ 0.525SER-FIQ 0.525

SDD-FIQA 0.576SDD-FIQA 0.576

Weighted Score 0.929Weighted Score 0.929

CRL-UIQA 0.771CRL-UIQA 0.771

SER-FIQ 0.518SER-FIQ 0.518

SDD-FIQA 0.471SDD-FIQA 0.471

Weighted Score 0.956Weighted Score 0.956

CRL-UIQA 0.730CRL-UIQA 0.730

SER-FIQ 0.591SER-FIQ 0.591

SDD-FIQA 0.791SDD-FIQA 0.791

Weighted Score 0.924Weighted Score 0.924

CRL-UIQA 0.427CRL-UIQA 0.427

SER-FIQ 0.470SER-FIQ 0.470

SDD-FIQA 0.441SDD-FIQA 0.441

Weighted Score 0.913Weighted Score 0.913

CRL-UIQA 0.258CRL-UIQA 0.258

SER-FIQ 0.433SER-FIQ 0.433

SDD-FIQA 0.551SDD-FIQA 0.551

Weighted Score 0.895Weighted Score 0.895

CRL-UIQA 0.546CRL-UIQA 0.546

SER-FIQ 0.487SER-FIQ 0.487

SDD-FIQA 0.457SDD-FIQA 0.457

Weighted Score 0.949Weighted Score 0.949

CRL-UIQA 0.464CRL-UIQA 0.464

SER-FIQ 0.535SER-FIQ 0.535

SDD-FIQA 0.582SDD-FIQA 0.582

Weighted Score 0.918Weighted Score 0.918

CRL-UIQA 0.483CRL-UIQA 0.483

SER-FIQ 0.521SER-FIQ 0.521

SDD-FIQA 0.531SDD-FIQA 0.531

Weighted Score 0.847Weighted Score 0.847

CRL-UIQA 0.419CRL-UIQA 0.419

Fig. 3. Quality prediction results of learning-based methods for different quality US
images. The two images in the same column are higher quality and lower quality images
respectively. We label the scores that can successfully differentiate between high and
low quality images by predicting the results as green. Conversely, we mark them as
red.

4 Conclusion

In this paper, we propose an unsupervised ultrasound image quality assessment
method, CRL-UIQA. Our method constructs pseudo-labels by calculating fea-
ture distribution distances between an image and high-quality standard plane
images without relying on any annotated information about image quality. Dif-
ferent from the direct regression pseudo-labels approach, we use consistency
loss to encourage the model to focus on capturing robust and stable features
in different views of the same image quality, and relevancy loss to emphasize
the correlation between different image qualities and quality prediction scores.
Experimental results on fetal 4CH and abdomen US images demonstrate the
effectiveness of the proposed method and demonstrate excellent generalization
capabilities over different plane images.
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