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Abstract. The assessment of HER2 expression is crucial in diagnos-
ing breast cancer. Staining pathological tissues with immunohistochem-
istry (IHC) is a critically pivotal step in the assessment procedure, while
it is expensive and time-consuming. Recently, generative models have
emerged as a novel paradigm for virtual staining from hematoxylin-eosin
(H&E) to IHC. Unlike traditional image translation tasks, virtual stain-
ing in IHC for HER2 scoring requires greater attention to regions like
nuclei and stained membranes, informed by task-specific domain knowl-
edge. Unfortunately, most existing virtual staining methods overlook this
point. In this paper, we propose a novel generative adversarial network
(GAN) based solution that incorporates specific knowledge of HER2
scoring, i.e., nuclei distribution and membrane staining intensity. We
introduce a nuclei density estimator to learn the nuclei distribution and
thus facilitate the cell alignment between the real and generated im-
ages by an auxiliary regularization branch. Moreover, another branch
is tailored to focus on the stained membranes, ensuring a more consis-
tent membrane staining intensity. We collect RegH2I, a dataset com-
prising 2592 pairs of registered H&E-IHC images and conduct extensive
experiments to evaluate our approach, including H&E-to-IHC virtual
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staining on internal and external datasets, nuclei distribution and mem-
brane staining intensity analysis, as well as downstream tasks for gener-
ated images. The results demonstrate that our method achieves superior
performance than existing methods. Code and dataset are released at
https://github.com/balball/TDKstain.

Keywords: H&E-to-IHC virtual staining · Generative adversarial net-
work · Domain knowledge · HER2 scoring.

1 Introduction

The function of Human Epidermal Growth Factor Receptor 2 (HER2) is to
regulate cell growth and division. In certain cancers, the overexpression of HER2
can result in excessive tumor growth and malignant transformation [4, 8, 21].
Thus, HER2 is referred to as a cancer biomarker. Accurate assessments of HER2
expression require immunohistochemical (IHC) staining for pathological tissues,
which entails expensive antibodies and intricate experimental procedures [6,12].

With recent advancements in digital pathology and deep learning, generative
models have emerged as a novel paradigm for virtual staining [2, 18]. Liu et
al. [13] proposed a variant of Pix2pix [9] called Pyramidpix2pix, which employed
Gaussian convolutions on image pairs at multiple scales to weaken the constraints
of pixel-level alignment for H&E-to-IHC stain translation. Besides, Li et al. [11]
presented a novel loss function to deal with the input-to-target inconsistencies by
mitigating the negative impact of noisy supervision. Furthermore, some methods
have incorporated prior pathological knowledge from experts into their networks,
such as segmentation annotations [14] and patch-level labels [23], to preserve
representative pathology phenotypes. Leveraging well-trained generative models,
complex IHC-stained images can be directly generated from readily available
H&E-stained images, significantly simplifying the process and reducing costs.

Different stained images from consecutive cuts exhibit inherent differences
even before staining, thus resulting in a lack of nearly perfect pixel-level regis-
tration between image pairs. Additionally, cellular and tissue structures exhibit
strong homogeneity, resulting in minimal visual distinctions between images con-
taining different diagnostic information. Thus, unlike traditional image transla-
tion tasks that usually seek perfect pixel alignment, virtual staining focuses more
on specific regions, which are determined by medical knowledge. According to
the guidelines [1], HER2 scoring primarily focuses on the quantity of infiltrat-
ing carcinoma cells and the intensity of membrane staining. Thus, the nuclei
distribution and membrane staining should be exactly accurate in the gener-
ated images. However, most existing virtual staining methods for HER2 scoring
do not comprehensively consider the task-specific knowledge. In this case, even
though the visual difference between the real and generated images is minimal,
critical information essential for clinical diagnosis might still be lost.

To address this gap, in this paper, we propose a novel Generative Adversarial
Network (GAN) based solution that incorporates specific medical knowledge of
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Fig. 1. Overview of the proposed framework. (a) Knowledge extraction to obtain nuclei
density map, membrane staining channel and its intensity mask. (b) A nuclei density
estimator deployed to depict the nuclei distribution. (c) An auxiliary branch to guide
GAN focusing on membrane staining regions. (d) An auxiliary branch to promote nuclei
distribution alignment. (e) A discriminator in GAN training. Note that the encoder
and nuclei density estimator in different modules share weights.

HER2 scoring, particularly the nuclei distribution and membrane staining in-
tensity. We conduct extensive experiments to evaluate our approach, including
H&E-to-IHC virtual staining on internal and external datasets, nuclei distribu-
tion and membrane staining analysis, as well as downstream tasks for generated
images. And our proposed method consistently outperforms existing methods.
Overall, our primary contributions can be summarized as follows: (1) We collect
and build RegH2I: a well-registered H&E to IHC image translation dataset for
HER2 scoring. (2) We propose a novel GAN for H&E-to-IHC virtual staining in
HER2 scoring, guided by specific domain knowledge, enriching diagnosis infor-
mation in the generated images. (3) We introduce a nuclei density estimator to
learn the nuclei distribution, promoting the cell alignment between the real and
generated images by an auxiliary regularization branch. (4) We tailor another
auxiliary branch to guide the model focus on the membrane staining regions,
ensuring a more consistent membrane staining intensity.

2 Method

Fig. 1 illustrates the overview of our method. Given real H&E-stained images
{xi}Ni=1 ∈ X and real IHC-stained images {yi}Ni=1 ∈ Y, our objective is to train
a generator G to minimize the inconsistency between G(X ) and Y. Initially, we
extract task-specific domain knowledge in HER2 scoring, as depicted in Fig. 1(a).
The training process consists of two primary stages. First, we train the nuclei
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density estimator, as shown in Fig. 1(b). In the second stage, GAN is trained with
two auxiliary branches, realizing membrane staining enhancement and nuclei
density regularization, as illustrated in Fig. 1(c) and Fig. 1(d), respectively.
Domain Knowledge in HER2 Scoring. In IHC-stained images, cell mem-
branes with abnormal HER2 expression are typically stained with diaminoben-
zidine (DAB), appearing brown. According to HER2 guidelines [1], the clinical
knowledge for HER2 scoring emphasizes the quantity of infiltrating carcinoma
cells and the intensity of membrane staining (brown), where the nuclei are uni-
formly stained in blue. Inspired by this, in Fig. 1(a), we perform color decon-
volution [19] on the real IHC-stained image to obtain the hematoxylin staining
channel and the DAB staining channel KM in Haematoxylin-Eosin-DAB (HED)
color space. The former indicates the nuclei distribution, while the latter indi-
cates the region of stained membranes. For the hematoxylin channel, we utilize
Ostu’s threshold method [16] followed by morphological operations to derive the
nuclei distribution map. Based on the map, we utilize pretrained cell segmenta-
tion models to obtain the nuclei centroids. Lastly, we create a binary matrix by
setting the elements corresponding to the nuclei centroids as one. This binary
matrix is then transformed into a continuous density map KN through convolu-
tion with a Gaussian kernel. For the DAB channel, we initially convert it into
the HSV color space and subsequently derive the membrane staining intensity
mask M by applying a threshold on the saturation channel.
Nuclei Density Estimator. The nuclei distribution offers crucial insights into
the overall morphology of pathological images. Thus, we introduce an estimator
E to approximate nuclei density maps, as illustrated in Fig. 1(b). E is composed
of several convolution layers and residual blocks. The generator G comprises
an encoder Gen, a decoder and several residual blocks. We leverage multiple
high-level semantic features of Y from Gen to train E, with Gen being frozen.
Subsequently, the estimator E is optimized by the loss function

Lestimator(E) = EY,KN
[∥E((Gen(Y)),KN∥2] , (1)

where ∥·∥2 denotes the L2 distance. And KN denotes true nuclei density maps
generated from the knowledge extraction procedures.
Membrane Staining Enhancement. A critical aspect in HER2 scoring dur-
ing routine evaluation is the assessment of membrane staining intensity [1].
Thus, a well-generated HER2-stained image should precisely depict the expres-
sion on staining membranes. To improve the preservation of staining knowledge
and eliminate cellular matrix information, we introduce an auxiliary membrane
staining enhancement branch for the generator. This branch operates by mask-
ing H&E-stained images with corresponding membrane staining intensity masks.
The masked images are then input into the generator to produce virtual DAB
channel images. Similar to the original branch, this auxiliary branch is also su-
pervised by the pixel values of corresponding real images. However, in this case,
the additional generated results are expected to approximate the DAB value
distribution of real images, thereby capturing the DAB channel information, as
illustrated in Fig. 1(c). Consequently, the membrane staining enhancement on
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the generator is implemented by optimizing

Lmembrane(G) = EX ,M,KM
[∥G(M⊙X ),KM∥1] , (2)

where ∥·∥1 denotes L1 distance, ⊙ denotes pixel-wise product. G represents the
generator, M denotes membrane staining intensity masks, and KM denotes real
DAB channel images.
Nuclei Density Regularization. The well-trained density estimator E is
utilized to evaluate the consistency of nuclei density between real and generated
IHC-stained images. When training the generator, the nuclei density estimator
remains frozen. As the density estimator predicts the nuclei density maps for
generated IHC-stained images, the generator is also optimized through nuclei
density regularization. The corresponding loss function is formulated by

Lnuclei(G) = EX ,KN
[∥E(Gen(G(X ))),KN∥2] , (3)

Minimizing Lnuclei promotes the nuclei distribution alignment between the real
and generated images. The method to generate nuclei density maps for generated
images based on color space transformation is non-differentiable. In this case,
the corresponding loss cannot be backpropagated to optimize the generator.
However, the proposed density estimator overcomes this issue, enabling nuclei
density regularization to guide the generator.
Training Strategy. Our objective function of GAN training is based on a
conditional GAN [9], which can be expressed as

LGAN (G,D) = EX ,Y [logD(X ,Y)] + EX [log(1−D(X , G(X )))] , (4)

where G tries to minimize this objective against an adversarial D that tries to
maximize it. Therefore, our final objective is

G∗ =argmin
G

max
D

LGAN (G,D) + λL1LL1(G)

+ λNLnuclei(G) + λMLmembrane(G),
(5)

where λL1, λN , λM are trade-off hyper-parameters, and LL1(G) represents the
L1 loss between real and generated images.

In each iteration, we first update the nuclei density estimator by Lestimator

with a coefficient λE . Then we update the discriminator followed by the gener-
ator, where the vanilla GAN loss is replaced with the LSGAN objective [15].

3 Experiments

Dataset. We collect RegH2I, a dataset comprising 2592 pairs of well-registered
H&E-IHC images, where the IHC-stained images are processed by 4B5 antibody
[10]. These slides are scanned at a magnification of 20× and cover all HER2
scores. All images are of the fixed size 1024px × 1024px and non-overlapping.
We use 1992 paired images for training and 600 for testing.
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Table 1. Performance comparison. The best results are highlighted in bold.

Experiment Method SSIM↑ FID↓ DISTS↓
CycleGAN [24] 0.3361 40.91 0.2121

Pix2pix [9] 0.3452 47.77 0.1920
SOTAs Pix2pixHD [22] 0.3387 41.77 0.1910

Pyramidpix2pix [13] 0.3477 49.32 0.1934
ASP [11] 0.3256 64.04 0.2200

w/o Lnuclei & Lmembrane 0.3423 44.01 0.1930
Ablation w/o Lnuclei 0.3448 37.77 0.1798

w/o Lmembrane 0.3416 37.40 0.1830
ours 0.3424 33.92 0.1744

Evaluation Metrics. We employ evaluation metrics from previous works, in-
cluding SSIM (Structural Similarity Index Measure) and FID (Fréchet Inception
Distance). As the paired images are obtained from consecutive cuts of tissues,
perfect pixel-level matching is unavailable. Thus, we adopt an additional met-
ric, DISTS (Deep Image Structure and Texture Similarity) [5], which exhibits
a strong correlation with human quality judgments and demonstrates a high
degree of tolerance to texture deviation.

Fig. 2. Visualization of different methods on images with all HER2 scores. Note that
HER2 scores here simply indicate that each image is taken from representative regions
of the corresponding scored whole slide image.

Implementation Details. For the generator, we employ a 9-block ResNet [7]
as the backbone. As for the discriminator, we utilize the multi-scale discrimina-
tors [22] at three image scales, with each discriminator being a 3-layer PatchGAN
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Fig. 3. The error analysis of task-specific domain knowledge. (a) Nuclei density error
distribution of all methods. (b)-(e) Membrane staining intensity errors grouped by
HER2 scores. The representation of HER2 scores here is the same as Fig. 2.

discriminator [9]. Regarding the density estimator, the number of residual blocks
is set as 4. The utilized pretrained cell segmentation model is Cellpose [20].
Comparison with State-of-the-arts. We compare the proposed method with
existing image-to-image translation and virtual staining methods, including Cy-
cleGAN [24], Pix2pix [9], Pix2pixHD [22], Pyramidpix2pix [13] and ASP [11].
The quantitative results are shown in Table 1. Generally, for metrics measuring
deep feature similarity like FID and DISTS, our method achieves considerable
improvements, evidenced by more convincing results in the data distribution
and human perception. However, due to the inconsistency between real H&E
and HER2-stained images, our proposed method achieves only moderate results
compared to existing methods for the pixel-level metric SSIM. For an intuitive
comparison, we show the generated images covering all HER2 scores in Fig. 2. It
can be observed that our method achieves the best mapping from H&E to IHC
across all HER2 expressions. This superiority is attributed to (1) unsupervised
methods like CycleGAN and ASP can only achieve simple style transfer, failing
to accurately detect HER2 expressions; (2) other supervised methods mainly fo-
cus on pixel alignment, lacking the preservation of key pathological information
(e.g., weak staining membranes on HER2 1+ expression).
Ablation Study. We perform an ablation study to validate the effectiveness of
the proposed auxiliary branches, namely membrane staining enhancement and
nuclei density regularization. The corresponding results are shown in Table 1,
where it can be observed that the removal of either module leads to a degra-
dation in the performance of our method. Therefore, both the nuclei density
regularization and membrane staining intensity are necessary for our method.
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Table 2. HER2 staining intensity classification and H&E-to-IHC staining results on an
external dataset. The best results are highlighted in bold. * denotes that the training
and test process of classification task are both implemented on H&E images. “Real IHC
images” here is only computed as a reference.

Method Classification Staining

ACC↑ F1↑ SSIM↑ FID↓ DISTS↓
H&E* 0.4246 0.3205 - - -

CycleGAN [24] 0.5263 0.4714 0.2915 108.74 0.2592
Pix2pix [9] 0.5930 0.5253 0.3120 128.07 0.3006

Pix2pixHD [22] 0.6386 0.5430 0.3041 104.96 0.2791
Pyramidpix2pix [13] 0.7053 0.6567 0.3071 130.08 0.2917

ASP [11] 0.5439 0.5002 0.2842 112.42 0.2510
ours 0.7263 0.6795 0.3141 104.79 0.2657

Real IHC images 0.7228 0.7298 - - -

Task-specific Domain Knowledge Analysis. We conduct two analyses to
validate the superiority of our method in leveraging task-specific domain knowl-
edge. For nuclei density, we calculate the difference in the number of nuclei be-
tween real and corresponding generated IHC-stained images. As shown in Fig.
3(a), our method (red line) has the maximum frequency around zero error, indi-
cating the closest reproduction of nuclei density on generated images, attributed
to the nuclei density regularization. For membrane staining intensity, we apply
increasing thresholds from 0.1 to 0.5 with a step size of 0.02 to obtain a set of
M for real and generated images. Subsequently, we calculate the ratio of M
to the whole image for each threshold and calculate the difference between this
ratio in real and generated images as the error. As depicted in Fig. 3(b)-(e), our
method (red line) demonstrates more pronounced advantages as HER2 expres-
sion increases. With the auxiliary branch for membrane staining enhancement,
our method achieves better consistency in membrane staining intensity.
Analysis on External Data. To further evaluate the feasibility of virtual
IHC-stained images for downstream tasks, in this part, we present a dataset
comprising 285 pairs of H&E-IHC images stained with SP3 [3] or CB11 [17] an-
tibody. Specifically, we conduct a downstream classification task to distinguish
four types of membrane staining intensity, in line with the guideline for HER2
scoring [1]. For each virtual staining method, we utilize the IHC-stained images
(600 patches) generated previously as the training and validation set to train
a ResNet50 [7] classifier, which is then evaluated on the external IHC-stained
images. As shown in Table 2, the classifier trained by generated images of our
method outperforms all comparative methods, even competitive with the re-
sults of the classifier trained with real IHC-stained images. Notably, the original
H&E-stained images lead to poor performance for the classification task due
to the disability of measuring membrane staining intensity. Therefore, accurate
virtual staining from H&E to IHC on HER2 images significantly contributes to
the assessment of HER2 expressions. In addition, we also present the evalua-
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tion of H&E-to-IHC virtual staining in the newly presented dataset in Table 2.
Since the different antibodies result in non-negligible discrepancies, substantial
degradation can be observed for virtual staining. In contrast, the semantic con-
sistency across different antibodies contributes to the transferability in classi-
fication tasks, hence, the superiority of our method validates its capability to
capture diagnosis information during virtual staining.

4 Conclusions

In this paper, we propose a novel GAN model to advance H&E-to-IHC virtual
staining for HER2 scoring. We introduce a nuclei density estimator to learn
nuclei distribution, along with two auxiliary branches for nuclei density regular-
ization and membrane staining enhancement, ensuring pathological consistency
between real and generated images. Our method outperforms existing methods
and demonstrates the importance of integrating medical insights into models for
accurate virtual staining. In the future, we aim to devise a unified approach for
injecting medical knowledge into models for various clinical tasks.
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