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Abstract. Hematoxylin and eosin (H&E) staining offers the advantages
of low cost and high stability, effectively revealing the morphological
structure of the nucleus and tissue. Predicting the expression levels of
estrogen receptor (ER), progesterone receptor (PR), and human epider-
mal growth factor receptor 2 (HER2) from H&E stained slides is cru-
cial for reducing the detection cost of the immunohistochemistry (IHC)
method and tailoring the treatment of breast cancer patients. However,
this task faces significant challenges due to the scarcity of large-scale and
well-annotated datasets. In this paper, we propose a double-tier attention
based multi-label learning network, termed as DAMLN, for simultaneous
prediction of ER, PR, and HER2 from H&E stained WSIs. Our DAMLN
considers slides and their tissue tiles as bags and instances under a mul-
tiple instance learning (MIL) setting. First, the instances are encoded
via a pretrained CTransPath model and randomly divided into a set of
pseudo bags. Pseudo-bag guided learning via cascading the multi-head
self-attention (MSA) and linear MSA blocks is then conducted to gener-
ate pseudo-bag level representations. Finally, attention-pooling is applied
to class tokens of pseudo bags to generate multiple biomarker predictions.
Our experiments conducted on large-scale datasets with over 3000 pa-
tients demonstrate great improvements over comparative MIL models.
The code is available at https://github.com/PerrySkywalker/DAMLN.
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1 Introduction

The molecular classification is pivotal for guiding the diagnosis and treatment of
breast cancer [19]. Identifying the expression levels of key predictive biomarkers

https://github.com/PerrySkywalker/DAMLN
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such as ER, PR, and HER2 through IHC staining is considered the gold stan-
dard for diagnosing and staging breast cancer [21]. Currently, biomarker status
is typically determined using separate IHC staining for each biomarker [16].
However, IHC staining is costly, time-consuming, and often missing in clinical
practice due to resource constraints, hindering its widespread application [10,9].
In contrast, H&E staining is more efficient and cost-effective, providing mor-
phological insights into tissues and cells, which can also inform IHC biomarker
status. Therefore, there is a pressing need to develop effective AI models for
predicting IHC biomarkers using H&E stained whole slide images (WSIs).

Recent studies have explored deep learning models for predicting IHC biomarker
status using H&E stained histological images [8]. For example, Couture et al. [2]
utilized a pretrained VGG16 network to extract features from H&E stained
tissue microarrays (TMA), and then predicted the ER status of breast cancer
patients via support vector machine (SVM). Rawat et al. [17] trained ResNet
models to extract “tissue fingerprints” from H&E stained TMA images of breast
cancer patients. Subsequently, they fed patch-level “fingerprints” into three neu-
ral networks to predict the ER, PR, and HER2 status, respectively. Gamble et
al. [4] trained three fully supervised InceptionV3 models, using H&E stained
histological images as inputs, to make patch-level predictions for ER, PR, and
HER2 status. They then quantified patch-level predictions and generated WSI-
level predictions using a regularized regression model. Although these approaches
have reported promising performances in IHC biomarker prediction, they all rely
on patch-level classification models, assuming that all histological image patches
inherit patient-level biomarker labels. However, this assumption overlooks the
heterogeneity of the tumor-immune microenvironment, resulting in noisy train-
ing of the biomarker prediction model [6,24].

To address the challenges of lacking patch-level biomarker labels for WSIs,
MIL emerges as a promising approach, requiring only bag-level labels for model
training. Recently, embedded-space (ES) based MIL methods have gained trac-
tion among researchers for addressing WSI classification tasks. In the ES paradigm,
a pretrained model is leveraged for feature extraction, embedding all instances
as low-dimensional feature vectors. Then, a bag-level aggregator, often based on
attention-pooling or MSA in Transformer [20], is employed to aggregate features
and derive final bag-level representations. The popular ES-based MIL models
for WSI classifications include attention-based MIL (ABMIL) [7], clustering-
constrained attention MIL (CLAM) [12], Transformer based MIL (TransMIL) [18],
and double-tier feature distillation MIL (DTFD) [23]. Using the ABMIL frame-
work, Naik et al. [14] devised a weakly-supervised deep neural network to iden-
tify ER status from H&E-stained WSIs. Training deep MIL models necessitates
a large quantity of WSIs with diverse data; otherwise, effective optimization
of deep MIL models is impeded, resulting in poor classification performance.
However, amassing a large WSI cohort is financially and logistically challenging
due to data scarcity and collection difficulties. Furthermore, there are multiple
IHC biomarkers such as ER, PR, and HER2, indicating a need for multi-label
learning integrated with MIL to better fulfill clinical applications.
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In this paper, we propose a multi-label learning model called DAMLN for
simultaneous prediction of multiple IHC biomarkers using H&E stained WSIs.

The contributions of this paper are: (1) We develop a pseudo-bag guided
learning approach that enhances the diversity and quantity of bags for effec-
tively training the MIL framework, thereby improving prediction performance.
This approach decomposes a WSI into several randomly generated pseudo-bags,
reducing the computational burden of MIL by decreasing bag size. (2) By stack-
ing standard MSA and linear MSA blocks, our DAMLN model can better learn
global interactions among instances when generating pseudo-bag representa-
tions, resulting in improved aggregation of instance-level embeddings compared
to other MIL models. (3) To the best of our knowledge, our DAMLN is the
first multi-label learning model that exploits the correlation among biomarkers
to enhance accuracy and efficiency of simultaneously predicting ER, PR, and
HER2 status via H&E stained WSIs.

2 Methods

Figure 1 shows the overview of our DAMLN model which includes three modules:
pseudo-bag generation, pseudo-bag guided learning, and multi-label learning pre-
diction. The details of our DAMLN model are described as follows.

Fig. 1. Overview of our DAMLN model. Pseudo-bags are generated from patch-level
embedding, and pseudo-bag guided learning is conducted to assist in learning effective
pseudo-bag representations. Multi-label learning is then performed to predict multiple
IHC biomarkers.
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2.1 Problem Formulation

Given a dataset W = {W1,W2, ...,WN} consisting of N WSIs, each WSI Wi

has multiple labels {yi,1, yi,2, ..., yi,M}, where yi,j ∈ {0, 1}, j = {1, 2, ...,M} rep-
resents different biomarker labels (e.g., ER±, PR±, HER2±). We then break
down each WSI Wi into numerous patches {pi,1, pi,2, ..., pi,ni

}, where ni is the
number of patches obtained from the i-th WSI; pi,ni

∈ R
W×H×3, where W

and H represent the width and height of the patch. In the MIL paradigm, all
patches {pi,1, pi,2, ..., pi,ni} from Wi constitute a bag, and each patch within a
bag is treated as an instance. The bag has the same labels as the corresponding
WSI, while the labels for its instances are unknown. Our objective is to effec-
tively aggregate instance-level embeddings to generate comprehensive bag-level
representations for the simultaneous prediction of multiple IHC biomarkers.

2.2 Pseudo-bag Generation

In WSIs, background regions (i.e., nearly white colors) are irrelevant for biomarker
prediction and only introduce noise and computational overhead, which are
excluded for analysis by thresholding [12]. The foreground regions containing
different tissue components are then divided into a set of non-overlapping im-
age patches at 20× magnification (224×224 pixels per patch). We employ the
CTransPath [22] as a feature extractor to derive features from tiled patches.
CTransPath, a hybrid model that combines a convolutional neural network
(CNN) with a multi-scale Swin Transformer [11], has been pretrained on ap-
proximately 15 million histological image patches, making it a potent feature
extractor. Let us denote the embedded feature vectors corresponding to patches
{pi,1, pi,2, ..., pi,ni} as {fi,1, fi,2, ..., fi,ni}, where fi,ni ∈ Rl. After patch embed-
ding, we randomly partition instance features of each bag into B roughly equal
subsets called pseudo-bags, denoted as H = {h1, h2, ...hB}, where hj ∈ Rn×l,
1 ≤ j ≤ B, and n represents the size of pseudo-bag and may slightly vary
across different pseudo-bags. Each pseudo-bag inherits the label of its parent
bag. This generation of pseudo-bags can effectively address the challenge of in-
sufficient WSIs for training MIL models, and enhance the generalization ability
and classification performance.

2.3 Pseudo-bag Guided Learning

As shown in Figure 1, the generated pseudo-bags are fed into a sequential of C
residual-connected MSA blocks to learn long-range dependencies among different
instances within each pseudo-bag. The MSA block comprises several parallel
standard softmax self-attention operations, i.e.,

A (Q, K, V ) = softmax

(
QKT

√
D

)
V, (1)

where Q = hjWQ, K = hjWK , V = hjWV , and WQ,WK ,WV ∈ R
l×l are

learnable linear projection matrices. The attention matrix A has a computational
complexity of O(2n2l).
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Given the considerable size of WSIs, with n often reaching thousands, the
computational burden of stacking numerous standard MSA blocks is substantial.
In this study, we opt for 2 standard MSA blocks (C=2) to strike a balance
between computational efficiency and classification performance.

The softmax function acts as a similarity measure between Q and K [1], and
it can be substituted with a decomposable kernel ϕ (·), following the commutative
property of multiplication, i.e.,

Al (Q,K, V ) = ϕ (Q)
(
ϕ
(
KT

)
V
)
. (2)

Compared to computing A, computing Al has a significantly smaller computa-
tional complexity of O(2nl2), as n is much larger than l in WSI classifications.
By employing Al as a replacement for A in the similarity measure, we further
stack 2 linear MSA blocks (D=2 in Figure 1) to deeply capture the internal cor-
relation among different instance embeddings. In this study, we use the Sigmoid
and Tanh functions as kernel functions for Q and K, respectively, i.e.,

Al (Q,K, V ) = Sigmoid (Q)
(
Tanh

(
KT

)
V
)
. (3)

Note that before feeding instance embeddings into linear MSA blocks, a class
token (i.e., xclass) is prepended to the beginning of each pseudo-bag. This token
serves to encode the class information associated with that pseudo-bag. Finally,
all class tokens of pseudo-bags are fed into an auxiliary multi-layer perceptron
(MLP) classifier for multi-label classifications regarding ER, PR and HER2 sta-
tus. The loss function for the auxiliary classification is identical to that of the
WSI-level multi-label learning (see Equation (6)).

2.4 Multi-label Learning Prediction

The class tokens (i.e., xclass
i ) of pseudo-bags are fed into attention-pooling block

that aggregates them into the WSI-level representation xs, which is computed
as:

xs =

B∑
i

aix
class
i , (4)

ai =
exp

{(
tanh

(
xclass
i WZ

)
⊙ sigmoid

(
xclass
i WU

))
WZU

}∑B
j=1 exp

{(
tanh

(
xclass
j WZ

)
⊙ sigmoid

(
xclass
j WU

))
WZU

} , (5)

where WZ ,WU ∈ Rl×d and WZU ∈ Rd×1 are learnable linear projection ma-
trices, and ⊙ is an element-wise multiplication. The WSI-level representation is
connected with an MLP classifier for the multi-label prediction. The overall loss
function Li based on binary cross entropy is computed as:

Li = mean

 M∑
j=1

−wi,j (yi,j log ( ˆyi,j) + (1− yi,j) log (1− ˆyi,j))

 , (6)
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where yi,j and ˆyi,j represent ground truths and predictions, respectively. The
problem of missing certain labels usually occurs in multi-label learning, re-
stricting model optimization to only samples with biomarker labels. The pa-
rameter wi,j facilitates binary cross-entropy computation solely on samples with
biomarker labels. Specifically, if yc exists, then wc is set to 1; otherwise, it is set
to 0. The function mean (·) represents an adaptive averaging operation applied
based on the available biomarker labels.

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

QHSU Dataset. QHSU dataset comprises 2384 H&E stained WSIs of breast
cancer patients, each representing one patient. These WSIs were scanned under
40× magnification (0.2511 um/pixel) at Qilu Hospital of Shandong University
in China. Biomarker labels for H&E stained WSIs are derived from diagnostic
reports, where experienced pathologists diagnosed biomarker status by assess-
ing the corresponding IHC stained slides. Notably, the number of patients with
HER2 labels (1688 patients) is fewer than those of ER and PR labels (2384
patients).

TCGA-BRCA Dataset. TCGA-BRCA is a publicly available dataset com-
prising breast cancer WSIs collected by The Cancer Genome Atlas (TCGA)
project. Poor-quality WSIs exhibiting severe artifacts or lacking IHC biomarker
labels are filtered out. As a result, we collect 757 WSIs with ER and PR la-
bels, and 745 WSIs with HER2 labels, forming the TCGA-BRCA cohort for
independent testing.

Table 1. Distribution of IHC biomarker labels in QHSU and TCGA-BRCA datasets

Datasets QHSU TCGA-BRCA
Labels ER PR HER2 ER PR HER2
Positive 1822 1750 470 583 509 111
Negative 562 634 1218 174 248 634

Table 1 summarizes the data distribution of all patients across our QHSU
and TCGA-BRCA datasets. Using the QHSU dataset, we first conduct ablation
experiments to assess the empirical settings in our DAMLN model. Subsequently,
we perform 5-fold cross-validation and compute the average results as internal
testing. Finally, models saved from the 5-fold cross-validation on the QHSU
dataset are used for external testing on the TCGA-BRCA dataset, and the
average results are reported. Our DAMLN model and other comparative models
mentioned in this study were implemented using Python and PyTorch [15], and
trained on an NVIDIA GeForce RTX4090 GPU. We employed the AdamW as
the optimizer, with a learning rate of 1e-4 and weight decay of 1e-5. Given
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the variability in size among WSIs, we set the batch size to 1. Within each
batch, the auxiliary prediction followed by WSI-level prediction is sequentially
performed to optimize our DAMLN model. The model performance is evaluated
using accuracy (ACC) and area under the receiver operating characteristic curve
(AUC).

3.2 Results and Discussion

Ablation Study. We conducted an ablation study on DAMLN using the QHSU
Dataset to examine the impact of pseudo-bag quantity B, patch embedding en-
coder, and MSA block settings. Table 2 lists our ablation study results. As out-
lined in Table 2, we increased the value of B from 1 to 7 with a step of 2. Consid-
ering the training time and AUC values, we found that setting B to 5 yields the
most promising performance. Subsequently, we replaced all linear MSA blocks
with standard MSA, resulting in a decline in ER and PR AUC values alongside
an increase in training time. Finally, when we substituted the CTransPath patch
encoder with a pre-trained ResNet50 [5] on the ImageNet dataset [3], nearly all
performance metrics exhibit a marked decrease, with AUC values experiencing
a notable reduction of 0.37%-2.31%. This highlights the efficacy of patch-level
embedding using the CTransPath model pretrained specifically for histological
images.

Table 2. Ablation experiments in terms of the value of B, settings on MSA blocks,
and patch-level encoder.

Models No. of Time/ ER PR HER2
Bags Epoch AUC ACC AUC ACC AUC ACC

DAMLN B=1 189s 0.9129 0.8393 0.8516 0.7928 0.8750 0.7986
DAMLN B=3 91s 0.9141 0.8545 0.8633 0.8184 0.8920 0.8281
DAMLN B=5 75s 0.9232 0.8528 0.8678 0.8167 0.8884 0.8044
DAMLN B=7 60s 0.9178 0.8603 0.8616 0.8217 0.8885 0.8270
Standard MSA B=5 117s 0.9133 0.8565 0.8568 0.8171 0.8866 0.8257
ResNet50 B=5 80s 0.9029 0.8334 0.8447 0.7898 0.8847 0.8166

Internal Comparison. We compare our DAMLN model with the follow-
ing state-of-the-art (SOTA) MIL models: ABMIL [7], Single-attention-branch
CLAM-SB [12], Multi-attention-branch CLAM-MB [12], TransMIL [18], and
DTFD [23]. It is worth noting that all compared methods were implemented
in a single label learning approach and adopted CTransPath as patch-level en-
coder. Table 3 list comparisons in terms of ER, PR, and HER2 predictions on the
QHSU dataset. As observed in Table 3, our DAMLN model outperforms all the
compared MIL models across different biomarker predictions. Specifically, our
DAMLN model achieves the highest AUC values of 0.9232, 0.8678, and 0.8884
for ER, PR, and HER2, respectively, as well as the highest ACC value of 0.8167
for PR. Although our DAMLN achieves slightly lower ACC values on ER and
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HER2 predictions compared to some other MIL models (e.g., CLAM), it is im-
portant to consider the severe label imbalance. In such cases, AUC is considered
a more comprehensive measure of performance. Unlike existing MIL models that
require separate training processes for each biomarker, our DAMLN model offers
the advantage of requiring a single-pass training to predict ER, PR, and HER2
status concurrently.

Table 3. Comparisons with SOTA MIL methods on the QHSU dataset.

Models ER PR HER2
AUC ACC AUC ACC AUC ACC

ABMIL [7] 0.9021 0.8477 0.8523 0.8071 0.8823 0.8198
CLAM-SB [12] 0.9013 0.8507 0.8453 0.8028 0.8806 0.8276
CLAM-MB [12] 0.8997 0.8574 0.8483 0.8058 0.8856 0.8240
TransMIL [18] 0.9029 0.8355 0.8525 0.7878 0.8797 0.8129
DTFD [23] 0.8930 0.8532 0.8377 0.8100 0.8758 0.8270
Ours (DAMLN) 0.9232 0.8528 0.8678 0.8167 0.8884 0.8044

External Comparison. Table 4 lists independent comparisons on TCGA-
BRCA dataset in terms of ER, PR, and HER2 predictions. As observed in Ta-
ble 4, our DAMLN model provides significant improvements compared with re-
cent biomarker prediction studies on TCGA-BRCA dataset. Particularly, our
model has over 3% and 6% improvements in ER and PR predictions compared
to these relevant studies. In addition, our model outperforms other SOTA MIL
models in the independent testing dataset, indicating the efficacy of pseudo-bag
guided learning and double-tier attentions developed in this study.

Table 4. External comparisons with relevant studies and SOTA MIL models on TCGA-
BRCA dataset.

Models ER PR HER2
AUC ACC AUC ACC AUC ACC

Gamble et al. [4] 0.83 - 0.72 - 0.58 -
Kather et al. [8] 0.82 - 0.74 - - -
Naik et al. [14] 0.85 - - - - -
Lu et al. [13] - - - - 0.75 -
ABMIL [7] 0.8646 0.8421 0.8026 0.7604 0.7274 0.7791
CLAM-SB [12] 0.8727 0.8492 0.7932 0.7540 0.7522 0.7632
CLAM-MB [12] 0.8721 0.8515 0.7928 0.7614 0.7487 0.7710
TransMIL [18] 0.8653 0.8403 0.7906 0.7635 0.7224 0.7603
DTFD [23] 0.8686 0.8418 0.7817 0.7543 0.7374 0.7036
Ours (DAMLN) 0.8801 0.8476 0.8090 0.7707 0.7521 0.7826



Double-tier Attention based Multi-label Learning Network 9

4 Conclusion

In this paper, we propose a double-tier attention-based multi-label learning net-
work called DAMLN, capable of simultaneously predicting multiple biomark-
ers from H&E stained WSIs of breast cancer. Our DAMLN model integrates
standard MSA and linear MSA blocks to aggregate instance-level embeddings
into comprehensive slide-level representations. Pseudo-bag guided learning and
multi-label learning are developed to effectively train MIL models and simulta-
neously predict multiple IHC biomarkers. Experiments conducted on two large
datasets demonstrate the advantages of our model in predicting ER, PR, and
HER2 status for breast cancer patients.
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