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Abstract. Motion artifacts in Magnetic Resonance Imaging (MRI) arise
due to relatively long acquisition times and can compromise the clinical
utility of acquired images. Traditional motion correction methods often
fail to address severe motion, leading to distorted and unreliable re-
sults. Deep Learning (DL) alleviated such pitfalls through generalization
with the cost of vanishing structures and hallucinations, making it chal-
lenging to apply in the medical field where hallucinated structures can
tremendously impact the diagnostic outcome. In this work, we present
an instance-wise motion correction pipeline that leverages motion-guided
Implicit Neural Representations (INRs) to mitigate the impact of mo-
tion artifacts while retaining anatomical structure. Our method is evalu-
ated using the NYU fastMRI dataset with different degrees of simulated
motion severity. For the correction alone, we can improve over state-of-
the-art image reconstruction methods by +5% SSIM, +5 db PSNR, and
+14% HaarPSI. Clinical relevance is demonstrated by a subsequent ex-
periment, where our method improves classification outcomes by at least
+1.5 accuracy percentage points compared to motion-corrupted images.

Keywords: Motion Correction · Reconstruction · Implicit Neural Rep-
resentations · Magnetic Resonance Imaging

1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique provid-
ing detailed images of soft-tissue structures. However, common artifacts, partic-
ularly motion-related ones, degrade image quality, impacting clinical diagnosis
and leading to high clinical costs [23]. Various retrospective strategies for motion
correction (MoCo) have been developed [4, 24]. Retrospective correction handles
motion artifacts post-acquisition, offering flexibility without requiring scanner
modifications. This approach benefits from prior knowledge such as from navi-
gators [7], and from the imaged object itself in so-called autofocus [3] or in data-
consistency (DC) [9] methods. Unfortunately, these methods face challenges in
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solving poorly conditioned, non-convex optimization problems with high com-
putational complexity. Image-based deep learning (DL) models, like convolu-
tional neural networks (CNNs) [1, 14] and generative adversarial networks [2],
have been employed for direct motion-refined image estimation to overcome the
challenges mentioned earlier. While promising, image-based DL-based methods
can be unstable, struggle with pathology preservation, and introduce undesired
alterations or hallucinations [4], raising concerns about their suitability for clin-
ical applications. Specific approaches break down the problem into intermediate
steps to address instability, maintain DC, and alleviate network hallucinations.
For instance, CNNs are employed to identify subsets of k-space lines affected by
motion, which can either be excluded [21] or down-weighted [5] in the context of
a DC-based reconstruction. However, these methods do not explicitly model mo-
tion (transformations) during reconstruction, potentially compromising quality
with many motion-corrupted lines. Efforts to improve efficiency integrate image-
based MoCo CNNs into DC-based [8] or autofocus [15] iterative algorithms.
Alternatively, they replace the optimization-based motion estimation with a DL
network and incorporate this information into the reconstruction process [10].
However, they rely on supervised training and require large paired datasets,
which are difficult to obtain in the medical domain. Recently, Implicit neural rep-
resentations (INRs) were used to model images as continuous functions, spurring
significant interest in instance-optimization-based reconstruction [19]. INRs do
not need to be population-trained and have proven successful in self-supervised
MRI reconstruction [6, 11], addressing issues present in prior methods, such as
hallucinations. Despite this, the potential of INRs for MoCo remains untapped.

In this work, we introduce a novel MoCo pipeline utilizing INRs to address
motion artifacts effectively while preserving anatomical structures in MRI scans.
Our contributions are 1) Developing a motion-guided INR-based method called
IM-MoCo, combining a k-space line motion detection network (klD-Net), an Im-
age INR, and a motion-INR. 2) Demonstrating its efficacy on the NYU fastMRI
dataset [13, 25] through significant reductions in simulated motion-induced dis-
tortions compared to competing methods. 3) Highlighting its potential by im-
proving pathology classification of fastMRI+ annotations [26]. These findings
position IM-MoCo as a promising advancement for enhancing MRI quality for
scans with light and heavy motion corruption.

2 Materials & Methods

An overview of the proposed IM-MoCo pipeline is depicted in Fig. 1. Our pipeline
comprises three steps: 1) Motion Detection with kLD-Net, 2) Generation of
motion-free intensity priors with an Image INR, and 3) Forward application of
predicted motion from a Motion INR.

2.1 Physical Model & Motion Simulation

The physical forward model, K = FI + ϵ, of a 2D rigid motion-induced MRI
acquisition K ∈ CNx×Ny×Nc with Nx and Ny being the number of points in the
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Fig. 1. IM-MoCo pipeline. The pre-trained klD-Net takes a motion-corrupted k-space
and outputs a motion mask, which is post-processed to yield a list of movement groups
indicated by the different colors in S for better visualization. The number of movements
and corresponding lines guide the Motion INR and the Image INR. The Image INR
predicts the motion-free image and the Motion INR is used for guidance by optimizing
the forward motion yielding a motion-corrupted k-space. The discrepancy between the
motion-corrupted and the measured k-space is minimized using the data-consistency
(DC) loss. The gradient entropy is a denoiser on the Image-INR output to impose crisp
image priors. The final motion-corrected image is the output of the Image INR.

frequency and phase encoding directions, respectively, and Nc being the number
of coils, can be described as follows:

K =

T∑
t=1

St ⊙FCMtI, (1)

where I ∈ CNx×Ny×Nc is the desired motion free image, Mt is the motion trans-
form at time point t, C ∈ CNx×Ny×Nc are the coil sensitivity maps, F is the
Fourier transform, ⊙ a sampling operator, and St is the sampling mask at time
point t. The motion transform Mt combines rotation and planar translations
in x and y directions. The sampling mask St is a binary mask indicating the
k-space lines acquired at time t. Equation (1) describes motion in the image
domain. However, the forward model can also be formulated in k-space as it
is mathematically equivalent [18]. Irrespective of the space in which motion is
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described, for the simulation of motion, it is crucial to synchronize the sampling
of motion St with the MR k-space filling scheme to simulate realistic artifacts
accurately. This work follows previously developed methods [16] and relies on
the simulation of rigid-body motion in 2D single-coil cartesian sampled k-spaces
filled sequentially left-to-right.

2.2 IM-MoCo

Motion Detection. In the first step of our pipeline, we present a k-space
Line Detection Network [5, 21] (kLD-Net) to detect motion-corrupted lines in
raw k-space data following a left-to-right sequential cartesian sampling scheme.
The kLD-Net, built on a U-Net [22], takes a complex-valued motion-corrupted
k-space as input, where the real and imaginary parts are concatenated in the
channel dimension, and outputs a binary mask predicting the motion-corrupted
lines denoted as S in Eq. (1). The four layers of the U-Net consist of convolutions
with a kernel size of 3×3, batch normalization, ReLU activation, and an average
pooling layer with kernel size 2 × 2. The number of channels (starting from
16) is doubled after each down-sampling operation and halved after each up-
sampling operation. A final 1 × 1 convolution outputs the predicted mask Ŝ.
The network is trained with the binary cross entropy loss with logits between
the predicted and ground truth masks. During inference, the raw prediction
of the network is activated with sigmoid and thresholded (> 0.5) to yield a
binary prediction mask. We consider a line corrupted if 20% of its frequencies
are classified as so, and we generate an index list, e.g., [1, 1, 0, 0, 0, 1, 1, 1], where 1
indicates a motion-corrupted line and 0 a motion-free one. We then post-process
it to yield a list of movement groups, where each group is a list of line indices
for one movement, e.g., [[1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1]] for the previously
mentioned example. The following steps use the number of movements n and
corresponding lines to guide the motion correction process.

Motion Correction. We use Ŝ from the kLD-Net (step 1) in a MoCo model,
which is a combination of an Image INR (step 2) that acts as an implicit image
prior and a Motion INR (step 3) to search for motion that satisfies the forward
model (see Sec. 2.1). We can rewrite the forward model F from Eq. (1), for
single-coil scans, as Fθ,Ψ as follows:

K̂ =

T∑
t=1

Ŝt ⊙F INRθ(hM(nM,x))t INRΨ (hI(x)), (2)

where INRΨ is the image INR with optimizable parameters Ψ , hI(x) is an encod-
ing of the 2D coordinate x, INRθ is the motion INR with optimizable parameters
θ, hM(nM,x) is an encoding of the 2D coordinate x and nM, which is a sequence
of linearly spaced numbers from −1 to 1 representing the number of movement
groups. Ŝt is the predicted motion mask at time t. Each INR is built from MPLs
taking encodings as input. To encode our data, we use hash grid encoding [20]
for hIs(x) and hM(nM,x). This encoding introduces learnable feature grids that
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enable a speed-up by replacing large MLPs with a look-up table of feature vec-
tors and a much smaller MLP. The Image INR consists of three layers with 256
channels and ReLU activations, while the Motion INR has three layers with 64
channels and tanh activations. The INRΨ predicts a 2-channel complex-valued
intensity image, while INRθ predicts n transformation grids for n movements.

In each iteration of the pipeline, we optimize the INRθ and INRΨ in an end-
to-end fashion by feeding the encoding and the mask Ŝ through the forward
model Fθ,Ψ which in term predicts a motion-free intensity image Î, applies the
motion to the intensity image resulting in a motion corrupted image that is
transferred to the k-space domain by the Fourier transform yielding K̂. Using
the DC-loss in k-space, we measure the discrepancy to the acquired k-space Kacq.
We use the gradient entropy on Î for regularization in image-space. The motion
correction loss is then defined as follows:

L =
1

N

N∑
i=1

||Kacq,i − K̂i||22︸ ︷︷ ︸
DC-loss in k-space

+ λ(−
N∑
i=1

∇Îi · log(∇Îi))︸ ︷︷ ︸
Regularization in image-space

, (3)

where N is the number of data points, ∇ is the gradient operator, and λ is the
regularization weight. The regularization is used to introduce image priors to
the Image INR as a denoiser, forcing the INR to learn an artifact-free image. To
ensure better motion estimates, high-frequencies are suppressed at the beginning
of the optimization by setting a large weight λ and halving it every s step after i
iterations [17]. The model is optimized until convergence, and the final motion-
corrected image is the output of INRΨ .

3 Experimental Results

3.1 Datasets & Motion Simulation

To evaluate our method, we use the MRI T2-weighted brain k-space data from
the open-source NYU fastMRI database [13, 25] in our first experiment. We
employed 300 2D slices from different patients and split them into 200/50/50 for
training/validation/testing. We cropped the images to 320× 320 and combined
the coils. The second dataset contains T1-weighted and FLAIR brain fastMRI
scans, which are part of the fastMRI+ [26] annotations and were used for the
downstream classification task. We classify two pathologies, Nonspecific White
Matter Lesion and Craniotomy, resulting in 1116 slices of 60 subjects with a
total of 2851 annotations. We split the slices into 889 (1460 annotations) for
training, 174 (467 annotations) for validation, and 50 (141) for testing. For all
experiments, two motion scenarios were simulated [16] with random rotations
and translations between −10 and +10 in ◦ and mm, respectively. In the Light
Motion scenario between 6 and 10 movements were introduced during simulation,
whereas the Heavy Motion scenario contained between 16 and 20 movements.
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3.2 Experimental Setup

Experiment I: Motion Correction in Simulated Data. Here the image cor-
rection quality is assessed. We implemented the following methods: 1) AF [3], 2)
U-Net [1], 3) AF+ [15], 4) IM-MoCo (ours). AF is an instance-wise autofocus-
ing approach and optimizes motion parameters using Adam for 100 iterations.
The U-Net is a population-trained model, mapping motion-corrupted images to
motion-free ones, for 200 epochs using Adam with 3e−4 learning rate and an
L1-SSIM loss. AF+ combines AF and the U-Net for deep image priors, trained
with default settings using the available codebase [15]. IM-MoCo is optimized for
200 iterations using Adam with learning rates of 1e−2 for the INRs and an initial
λ = 1e−2, halved every 10th step after 100 iterations. All methods were evalu-
ated on the T2-weighted 50 corrupted test scans for the two motion scenarios.
Results were evaluated using the structural similarity index (SSIM), peak-signal-
to-noise-ratio (PSNR) and the Haar Perceptual Similarity Index (HaarPSI) [12].
Experiment II: Downstream Classification Task. In this experiment, we
demonstrate clinical relevance with a classification of pathologies in motion and
motion-corrected images. We extract patches of size 124× 124 around bounding
boxes of the fastMRI+ dataset and normalized between [0, 1]. We used a pre-
trained ResNet18 (PyTorch Hub1) backbone for feature extraction and added
one trainable linear layer as the classification head. Using the SGD optimizer,
we trained the model for 100 epochs with a batch size of 20 and a learning rate
of 1e−3. The trained model is then applied to the test set. We report the SSIM,
PSNR, and HaarPSI for extracted patches around the bounding boxes and ac-
curacy for the classification.
Implementation Details. The kLD-Net was population-trained with Adam
(learning rate of 1e−4) for 4200 epochs and a batch size of 4. We used Py-
Torch for implementations and an NVIDIA GeForce RTX 2080 TI with 12 GB
of VRAM. The code is publicly available on Github2.

3.3 Results

Experiment I: Motion Correction in Simulated Data. Table 1 shows
quantitative results from the motion correction experiment. For light and heavy
motion, corrupted images yield SSIM values of 87% and 74%, PSNR values of
28db and 24db, and HaarPSI values of 70% and 56%, respectively. AF and U-Net
improve SSIM by 7% and 10%, PSNR by 5db and 3db, and HaarPSI by 18% and
16%, respectively. However, AF+ worsens results by ca. 2% across all metrics.
Compared to the best baseline, AF, our method improves SSIM/HaarPSI by
> 4% for SSIM, > 9% for HaarPSI, and > 10 db for PSNR. A qualitative
comparison is shown in Fig. 2.
Experiment II: Downstream Classification Task. The results are summa-
rized in Table 2. Motion-free images achieve an accuracy of 97%. For corrupted

1 https://pytorch.org/hub/pytorch_vision_resnet/
2 https://github.com/multimodallearning/MICCAI24_IMMoCo.git

https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/multimodallearning/MICCAI24_IMMoCo.git
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Fig. 2. The visualization shows the median results of motion-corrected images of our
IM-MoCo pipeline besides motion-corrupted, ground truth, and comparison methods.
The first and third rows show the light and heavy correction results, respectively. The
second and fourth rows show the residual error images.

Table 1. Quantitative results of experiment I: motion correction for all methods and
motion scenarios. We report the results as mean ± standard deviation over the test
set. The arrows indicate the direction of improvement.

Scenario Method SSIM↑ PSNR (db)↑ HaarPSI↑

Light Motion corrupted 87.26± 4.42 28.34± 2.97 70.48± 8.69
AF [3] 94.47± 2.06 33.91± 2.37 88.49± 4.11
U-Net [1] 91.39± 2.14 30.58± 2.33 81.58± 4.49
AF+ [15] 85.18± 4.75 27.93± 2.79 70.82± 8.83
IM-MoCo (ours) 98.25± 1.25 40.06± 3.33 97.20± 4.05

Heavy Motion corrupted 74.06± 6.36 24.28± 2.50 56.56± 8.68
AF [3] 87.19± 3.51 29.84± 2.32 78.91± 6.21
U-Net [1] 84.55± 3.63 27.40± 2.34 72.72± 5.69
AF+ [15] 70.61± 8.30 24.12± 2.67 56.91± 10.35
IM-MoCo (ours) 92.77± 3.59 33.06± 3.59 87.29± 9.38
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images, the accuracy is 96% for light and 94% for heavy motion, which is due
to image quality loss as reflected in SSIMs of 89% and 77%, respectively. The
U-Net’s accuracy is 90% for light and 88% for heavy while its SSIMs are 87%
and 79%. IM-MoCo achieves an accuracy of 97% for light and 96% for heavy
motion, with the highest SSIMs of 99% and 95%, respectively.

Table 2. Quantitative results of experiment II: image quality and classification ac-
curacy improvements in patches of the fastmri+ annotations. The arrows indicate the
direction of improvement.

Scenario Method SSIM↑ PSNR (db)↑ HaarPSI↑ Accuracy↑

Motion-free n.A. n.A. n.A. n.A. 97.16

Light Motion corrupted 89.93± 4.67 28.29± 4.07 76.12± 9.95 96.32
U-Net [1] 87.37± 4.31 25.80± 2.61 70.87± 7.74 90.44
IM-MoCo (ours) 99.00± 1.82 44.82± 6.44 97.33± 5.56 97.06

Heavy Motion corrupted 77.03± 5.74 23.56± 2.18 58.87± 6.20 94.12
U-Net [1] 79.45± 4.50 23.70± 2.18 59.82± 5.88 88.24
IM-MoCo (ours) 95.26± 3.31 34.56± 5.61 88.48± 7.80 96.32

4 Discussion & Outlook

Experiment I demonstrated that our method effectively enhanced the quality of
motion-corrupted images, surpassing comparison methods, which is mainly con-
tributed by the implicit image priors and DC with the acquired k-space in the
forward motion model. Notably, our approach exhibited robustness in address-
ing heavier motion scenarios as evidenced in Fig. 2 and Table 1. However, the
efficacy of our method hinges on the accurate detection of the klD-Net, which is
contingent upon the acquisition sequence and motion simulation pattern. In Ex-
periment II, we showcased the performance enhancement of a classification task
compared to both corrupted and U-Net-corrected images as indicated in Table 2.
This improvement in classification accuracy can be attributed to the prevention
of overfitting on "healthy" features in instance-optimization methods in contrast
to population training ones like the U-Net. Although our work primarily revolved
around 2D rigid motion, we are confident in the method’s potential for extension
to more complex motion, e.g., 3D rigid and non-rigid movements. This is feasible
by adapting the INR’s input coordinates and applying 3D transformations. Ex-
periments were conducted on single-coil data, but the extension to multi-coil can
be achieved by incorporating coil sensitivity maps following the third step of the
pipeline. Future investigations will explore the utilization of different sampling
patterns, such as radial sampling, and the adaptation of the motion detection
network to these patterns or pattern-independent methods. While real motion
cases were not tested in this study, we are optimistic regarding the adaptability
of our method through adjustments to the motion detection network.
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5 Conclusion

We have introduced IM-MoCo, a pipeline that utilizes motion-guided INRs to
mitigate the impact of motion artifacts in MRI scans. We tested our method
on the fastMRI dataset and observed improved image quality and pathology
classification performance. Our results suggest that IM-MoCo is a promising
solution for enhancing the quality of MRI scans in the presence of challenging
motion artifacts. In the future, we plan to investigate the applicability of our
method to real 3D motion cases to validate its potential for clinical applications.
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