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Abstract. This study challenges the validity of retrospective undersam-
pling in MRI data science by analysis via an MRI physics simulation. We
demonstrate that retrospective undersampling, a method often used to
create training data for reconstruction models, can inherently alter MRI
signals from their prospective counterparts. This arises from the sequen-
tial nature of MRI acquisition, where undersampling post-acquisition
effectively alters the MR sequence and the magnetization dynamic in a
non-linear fashion. We show that even in common sequences, this effect
can make learning-based reconstructions unreliable. Our simulation pro-
vides both, (i) a tool for generating accurate prospective undersampled
datasets for analysis of such effects, or for MRI training data augmenta-
tion, and (ii) a differentiable reconstruction operator that models under-
sampling correctly. The provided insights are crucial for the development
and evaluation of AI-driven acceleration of diagnostic MRI tools.

Keywords: Retrospective undersampling · Magnetization · Bloch sim-
ulation.

1 Introduction

Acceleration in MRI technology has progressed through three pivotal advance-
ments: (i) the introduction of rapid sequence methodologies like fast low angle
shot (FLASH) [6] and turbo spin echo (TSE) [2], (ii) the adoption of parallel
imaging techniques enabling partial k-space acquisitions [4], and (iii) the develop-
ment of compressed sensing strategies, which permit further k-space undersam-
pling through iterative reconstruction, leveraging sparse domains and ensuring
data consistency [9]. The latter advancement is notably compatible with ma-
chine learning, facilitating the fourth transition to learning-based reconstruction
methods that significantly enhance the speed of clinical MRI.

Learning-based reconstruction models, such as U-NETs [15] or variational
networks (VN) [7], necessitate specially prepared training data [14]. This is typi-
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cally generated from fully sampled k-space datasets, from which the target imag-
ing data is derived. The process involves retrospectively undersampling of fully
sampled datasets at various acceleration factors, presupposing that the under-
sampling does not influence the actual MRI acquisition process.

However, this assumption holds true primarily for sequences operating in
a steady-state regime Fig. 1(a,d). Many MRI sequences inherently incorporate
relaxation or preparation phases, interleaved with acquisition periods. During
these phases, the system remains in a transient state, with magnetization and
signal intensity fluctuating not only throughout the acquisition but also as a
direct consequence of it Fig. 1(b,c,e,f). Thus, undersampling in such transient or
pseudo-steady-state sequences as TSE and FLAIR shortens the acquisition phase
and thereby changes the dynamic signal evolution. Consequently, data acquired
prospectively with undersampling differ from those acquired retrospectively with
undersampling.

This critical aspect is often overlooked or disregarded in the development of
learning-based reconstruction algorithms, leading to suboptimal model perfor-
mance and deviations growing with the acceleration factors.

Within this article, we aim to: (i) illustrate this discrepancy through precise
Bloch-Simulation visualization, (ii) demonstrate its impact on the efficacy of
learning-based reconstruction models, and (iii) introduce a comprehensive and
differentiable Bloch model as an adaptable solution to the challenges posed by
undersampling.

2 Methods

2.1 Simulation Setup

For our study, we use the differentiable MRI simulation from the MR-zero frame-
work [8]. It utilizes the improved implementation of the extended phase graph
algorithm [16] called phase distribution graph (PDG), which has been recently
validated as a realistic and comprehensive MRI simulation by analytical solu-
tions, other simulation frameworks and in vivo measurements [5]. It includes
description of T1, T2, T∗

2, PD and diffusion processes as well as B0 and B1 field
inhomogeneities [5, 10]. The MR-zero simulation is implemented in pytorch and
generates the full MR signal proportional to the transverse magnetization Mxy
in every voxel without any simplifications and including the full sequence his-
tory t(N) for any (undersampled) sequence (seq), the magnetization in each voxel
changes throughout the simulation and for any sampling point n in measurement
m.

Mxy(N = m ∗ n) = Bloch(seq, t(N)) (1)

Due to auto-differentiation in pytorch, this operator can be used for model based
reconstruction [12]. The assumption of invariance against undersampling makes
the conceptual error that the signal acquisition has no effect on the current or
subsequent acquisitions. This can be interpreted as assuming the signal follows
an equation which is independent of any previous acquisition Fig. 1(c).
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Fig. 1. (a-c) IR-FLASH sequence readout phase for different flip angle and shots,
leading to different blurriness in the prepared images (d-f). In addition, the readout
and limited recovery time alter the dynamic of the MR signal (g-i), which deviates
from the ideal equation (3).

To challenge this assumption we choose a common sequence that has such
a signal equation, namely an inversion recovery magnetization prepared rapid
acquisition of gradient echoes (MPRAGE). In 2D, which is sufficient for our
argumentation this sequence is also known as an inversion recovery prepared
fast low angle shot (IR-FLASH) sequence [3].

Assuming a pseudo-steady state, where each readout reaches a steady state
at every time point, the equation, independent of N, can be stated as follows:

Mz(TIm) = M0

(
1−

(
2− 1− e−TR/T1

1− cos(α) · e−TR/T1
· e−TREC/T1

)
· e−TIm/T1

)
(2)

This equation describes the longitudinal magnetization Mz(TI) at a time TI
after the inversion. Here, M0 is the equilibrium magnetization, TIm is the mth
inversion time after the inversion pulse and before the FLASH readout which
acquires N acquisitions. TR is the repetition time of n acquisitions within each
FLASH sequence, T1 is the longitudinal relaxation time, α is the flip angle used in
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the FLASH sequence, and TREC is the recovery time after the FLASH sequence
before the next prepared scan m.

The signal provided by the FLASH readout is then given by:

Mxy = Mz(TI, TREC) sin(α) (3)

By comparing eq. 3 with the simulation (eq. 1), we can show when the assump-
tion of undersampling invariance of the signal is violated. The IR-FLASH used
has a flip angle of 10◦, the recovery time TREC = 2 seconds and 11 inversion times
TI = [10.0, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, 0.2]. TI = 100 was assumed to
be fully relaxed and used as a normalizing scan.

2.2 Unrolled Variational Network

To test the effect of prospective undersampling on neural networks based on ret-
rospectively undersampled data, we used the state of the art unrolled variational
network (VN) [7]. The unrolled VN used in the study uses 10 iterative blocks.
Specifically, the regularization module in each iterative block contains 36 sets
of 3D kernels (size = 7 x 7 x 7) and corresponding activation functions, each
of which is characterized by a weighted combination of 31 Gaussian radial basis
functions [7].

2.3 Training and Evaluation

The training data consisted of synthetic brain samples based on the BrainWeb
database [1]. The fuzzy model segments were filled with in vivo-like tissue pa-
rameters. It was assumed that B0 and B1 had no inhomogeneities. A total of
15 subject volumes, each with 70 slices, were used for training. In addition, 3
subject volumes, also with 70 slices each, were determined for validation in order
to fine-tune the model parameters. Finally, 2 subject volumes, were used as a
test dataset. The VN was trained with the mean square error (MSE) for the real
and imaginary part of the 5th fold undersampled image, using the target as a
fully sampled complex image. The evaluation was based on structural similarity
(SSIM) and root mean square error (RMSE).

Table 1. Performance Metrics for VN trained on retrospective undersampeld data.

Test Configuration SSIM RMSE MAE
Retrospectively undersampled 0.98987 0.00347 0.00201
Prospectively undersampled 0.94185 0.01437 0.00767



Death by Retrospective Undersampling 5

IFFT

re
tr

o
s
p
e
c
ti
v
e
ly

 t
ra

in
e
d
  

re
tr

o
s
p
e
c
ti
v
e
ly

 e
v
a
lu

a
te

d

VN recon ground truth

re
tr

o
s
p
e
c
ti
v
e
ly

 t
ra

in
e
d

p
ro

s
p
e
c
ti
v
e
ly

 e
v
a
lu

a
te

d

a)

d)

b)

SSIM

0.957

SSIM

0.533

c)

RMSE

0.0036

SSIM:

0.88

e)

SSIM:

0.534

f)

RMSE

0.053

RMSE

0.015

RMSE

0.053

Fig. 2. Variational network reconstructions after training on retrospectively under-
sampled data. (a,b) Magnitude image of the retrospective undersampled input and the
corresponding VN reconstruction. (c,d) Magnitude image of the prospective undersam-
pled input and the corresponding VN reconstruction. SSIM and RMSE were calculated
with respect to the fully sampled ground truth magnitude image.

Table 2. Statistical validation of differences in model performance: comparison of
SSIM, RMSE and MAE between tests on retrospective and prospective undersampled
data.

Metric T-statistic p-value
SSIM 90.1385 4.67× 10−139

RMSE -92.6020 6.78× 10−141

MAE -52.8006 3.80× 10−103
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Fig. 3. Variational network reconstructions after training on prospectively undersam-
pled data. (a,b) Magnitude image of the retrospective undersampled input and the
corresponding VN reconstruction. (c,d) Magnitude image of the prospective undersam-
pled input and the corresponding VN reconstruction. SSIM and RMSE were calculated
with respect to the fully sampled ground truth magnitude image.

3 Results

Fig. 1(g-i) shows the comparison of the signal equation (eq. 3) and the MR
simulation (eq. 1) for three different cases. (i) For long TREC, and low flip angle,
where both match and are independent of the acquisition. (ii) For short TREC
and high flip angle, where they deviate, and the simulated signal changes with
acquisition. (iii) like (ii) but for four FLASH shots, which reflects the same
change in dynamic as undersampling by factor 4. This clearly has both short
term blurring effects on the current acquisition Fig. 1(e,f), but also long term
history effects on later preparations and acquisitions.

Fig. 2 shows the impact of neglecting the effect of retrospective undersam-
pling by training the VN on retrospectively undersampled data and inferring it
for retrospective and prospective 5-fold undersampled data. The performance for
retrospectively undersampled data (Fig. 2a) is close to ground truth fully sam-
pled image Fig. 2(b,c), while the reconstruction for prospectively undersampled
(Fig. 2d) examples shows visible artifacts and poor performance (Fig. 2e), as
the RMSE increases by a factor of 5 and the SSIM decreases by 8%. Evaluation
metric were computed for the magnitude input image (IFFT) and reconstructed
VN output with respect to the fully sampled ground truth. Table 1 summarizes
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the comparison of performance metrics (SSIM, RMSE and MAE) for a model
trained on retrospective data and tested on both retrospective and prospective
data for complete test set. It clearly demonstrates higher SSIM and lower RMSE
and MAE for retrospective undersampled data. The hypothesis tests reinforce
these observations, providing strong statistical backing to the observed differ-
ences in performance (Table 2). Fig. 3 shows that this can be resolved when
training is done with the right dynamics (multi shot data or simulated prospec-
tive undersampled data).

Fig. 4(d-f) shows the deviation of the full T1 quantification of the multi-
IR FLASH sequence via MR-zero for the retrospectively undersampled target,
as the fitted data were prospectively undersampled. In contrast, quantification
for the prospective setting, i.e. the target and data were both prospectively
undersampled, the iterative fit yields an RMSE of only 0.013 (Fig. 4(a-c)).
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Fig. 4. T1 quantification via MR-zero framework. (a-c) Prospective setting, fitted data
and target were both prospectively undersampled. (d-f) Retrospective setting, fitted
data was prospectively undersampled but target was retrospectively undersampled.

4 Discussion

In this article we showed that the common practice of retrospective undersam-
pling of existing data [15, 17] to generate training data for learning-based MRI
reconstruction models have to be done with caveats. The performance of models
trained via retrospective undersampled data when applied to prospective data
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remains therefore unclear, and, as the deviation from prospective data increases
with the undersampling factor, highly accelerated methods might currently not
yet be at their theoretical limit. Our simulation approach allows to identify such
mismatches, correct data simulation, and even reconstruction with the complete
and differentiable MRI operator. Also, without simulation, matching training
data can be acquired in vivo by acquiring prospective undersampled data to-
gether with a fully sampled data, or in the correct segmentation mode so that
the dynamics are identical, such as in [11]. Still such scans can be very time
consuming especially if several undersampling factors need to be tested and ac-
quired. Thus, data generation or augmentation by our simulation model depict
a highly efficient solution. While Bloch-model-based reconstructions exist [13],
the insights of Bloch dynamics rarely applied in learning-based approaches. Our
simulation lowers here the threshold as it is implemented within pytorch, a native
machine learning framework.

5 Conclusion

Learning-based MRI reconstruction models may die a "death by retrospective
undersampling" if retrospective undersampling would compromise the dynamics
of prospective acquisition, which is the case for common clinical MRI sequences.
This might limit current highly accelerated methods in their performance. The
differentiable MR-zero simulation provides a solution as correct reconstruction
operator or generator of correctly simulated undersampled training data.
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